This Materi al

Am386™DXL

High-Performance, Low-Power, 32-Bit Microprocessor

n

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS
u Ideal for portable PCs

—True static design for long battery life

~Typical standby lcc < 0.02 mA at DC (0 MHz)

—~Typical operating lcc <275 mA at 33 MHz

—Lower power consumption than Intel i386DX or
Intel i386SX

~Small footprint 132-pin PQFP package

—~Wide range of chip sets and BIOS available to
support standby mode capabilities

—Performance on demand (0 to 40 MHz)

m Ideal for desktop PCs
—40-, 33-, 25-, and 20-MHz operating speeds
—Lower heat dissipation facilitates fan reduction or
elimination for cost savings and noise reduction
—Pin-for-pin replacement for Intel i386DX

® Compatible with 386DX systems and software

B Supports 387DX-compatible math
coprocessors

® AMD® advanced 0.8 micron CMOS technology

GENERAL DESCRIPTION

The Am386DXL microprocessor is a high-speed, true
static implementation of the Intel i386DX microproces-
sor. It is ideal for both desktop and battery-powered
portable personal computers. For desktop PCs, the
Am386DXL microprocessor offers a 21% increase in
the maximum operating speed from 33 to 40 MHz. Also,
this device offers lower heat dissipation, allowing sys-
tem designers to remove or reduce the size and cost of
the system cooling fan.

For portables, the Am386DXL microprocessor's true
static design offers longer battery life with low operating

power consumption and standby mode. At 33 MHz, this
device has 40% lower operating lcc than the Intel
i386DX. Standby mode allows the Am386DXL micro-
processor to be clocked down to 0 MHz (DC) and retain
full register contents. In standby mode, typical current
draw is less than 0.02 mA, a nearly 1000x reduction in
power consumption versus the Intel i386DX or Intel
i386SX.

Additionally, the Am386DXL microprocessor will be
available in a small footprint 132-pin plastic quad flat
pack (PQFP) package. This surface-mount package is
40% smaller than PGA, allowing smaller, lower-cost
board designs without the need for a socket.

Typical Icc
Worse 500
—
N 450
@
3 400- -
[=8
5 350
S
S 300 Am386DXL
mA 2507 {3 3865x
_ 200+ [J 386Dx
[+
z 1501
[0}
a
- 100
2
8 50 |
- T T —
Better Min. Freq. 20 MHz 25 MHz 33 MHz 40 MHz

1-196

Publication # 15484 Rev.C Amendment 0
Issue Date: December 1991

Copyrighted By Its Respective Mnufacturer

AMD a

BLOCK DIAGRAM

Segmentation Unit Paging Unit Bus Control
. A HOLD, INTR,
Effective Address Bus_ | > 3-Input oquest 1 5 NMI, ERROR, BUSY.
s Adder k Adder :i“ Prioritizer ¥ RESET, HLDA,
/] 32 o
/] a
i Descriptor Page 3
Effective Address Bus 'I A R gi P Cat?he %
32 <
]
Limit and Control & g
Attribute Attribute
: PLA PLA
Protection "
Test Unit S Address | | BE3-BE
Driver A31-A2
75 L , .
fal 2 Lg
2 3 e MG, DT,
3] = Pipeline/
| Internal (%mrol Bus 3 1), Bus Size 4> W/R, TOCK,
§ s Control ADS, NA,
3 3 576, READY
Barrel MUN/
Shifter, Decode .
$ Instruction Trans-
Adder Status and || Decoder Prefetcher/ colvors l4—» D31-DO
Flags Sequencing Limit 32
Multiply/ Checker
Divide \ , sc odo
-Decode tream
X L] control {nstruction 16 Byte
Register ROM Queue Code
File ALU " Queue
Control 32Bit
ALU Control Instruction Instruction
Predecode Prefetch g 32
Dedicated ALU Bus I
7
15021B-001
Am386DXL Microprocessor 1-197

This Material Copyrighted By Its Respective Manufacturer

n AMD

INTRODUCTION

AMD is proud to provide the Am386DXL microprocessor at a time when the personal computer market requires
alternatives. Alternate source manufacturers traditionally increase availability, add features, and broaden the market.
AMD has focused significant engineering resources to bring you these benefits.

AMD's track record with the 80286 shows that we were first to raise the performance of the 80286 from8 MHz 1o 10, 1 2,
and 16 MHz. We were first to offer new packaging technology with a smaller, lower cost PLCC. Today, over 90% of all
80286s sold use PLCC packaging. AMD is committed to similar advances with the Am386DXL microprocessor.

The Am386DXL microprocessor is more than just a re-creation of the Intel i386DX. Highly skilled engineers in our
Austin, Texas facility added enhancements to the microprocessor, through the use of our advanced 0.8 micron CMOS
technology. These enhancements include a true static design, and an increase in the maximum operating speed to
40 MHz. The true static design allows for lower operating power consumption, as well as standby mode for lower heat
dissipation in desktop PCs and longer battery life in portables.

AMD engineered the Am386DXL microprocessor to insure compatibility with the installed base of hardware and soft-
ware for the 386-based personal computers. The Am386DXL microprocessor is your solution to meet the demand for
high-performance, 32-bit desktop and portable personal computers.

1-198 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materi al

AMD n

FUNCTIONAL DESCRIPTION

True Static Operation

The Am386DXL microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am386DXL device eliminates the minimum operating
frequency restriction. it may be clocked from its maxi-
mum speed of 40 MHz all the way down to 0 MHz (DC).
System designers can use this feature to design true
32-bit battery-powered portable PCs with long battery
life.

Standby Mode

This true static design allows for a standby mode. At any
of its operating speeds (40 MHz to DC), the Am386DXL
microprocessor will retain its state (i.e., the contents of
all of its registers). By shutting off the clock completely,
the device enters standby mode. Since power con-
sumption is a function of clock frequency, operating
power consumption is reduced as the frequency is low-
ered. In standby mode, typical current draw is reduced
to less than 0.02 mA at DC.

Not only does this feature save battery life, but it aiso
simplifies the design of power-conscious notebook
computers in the following ways.

1. Eliminates the need for software in BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock (since) the system does not need to know
what state the processor is in.

Lower Operating lcc

True static design also allows lower operating lcc when
operating at any speed. See the following graph for typi-
cal current at operating speeds.

Performance On Demand

The Am386DXL microprocessor retains its state at any
speed from 0 MHz (DC) to its maximum operating speed
(20, 25, 33, or 40 MHz). With this feature, system de-
signers may vary the operating speed of the system to
extend the battery life in portable systems.

For example, the system could operate at low speeds
during inactivity or polling operations. However, upon in-
terrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the systemcanbe returnedto alow (or0 MHz) operating
speed without losing its state. This design maximizes
life while achieving optimal performance.

Typical Icc

450 1
400 T
350 1
300 T
250
200 T
150 T
100 T
50]

mA

—0— Intel CHMOS Wi

*

!
Intel CHMOS IV !
l

—®— Am386DXL CPU J

MHz

Am386DXL Microprocessor

1-189

Copyrighted By Its Respective Mnufacturer

Top Side View
H & F E

J

CONNECTION DIAGRAMS
132-Lead Ceramic Pin Grid Array (PGA) Package

n AMD

0

\owo.o,.Omowo.ouomo.ouo 020k o #) (080208 0805040500802 02020202
>050< >05075 >0 20k0JS |« ofOZ 0308 OS030F030E0505305050208
02020:08020%0030B05 0202002« =2[050502020508020805050L080503
o»oMOMo.MoVwomOmomo.womov.oVuomom o 3(0§0804040§0804040§0+0£020403
0302032 : ososogd |0 -|0¥0F0] 0#0808
0:020¢ OMOWOR w X oio§of 050803
02040 ¢ 0Yo0g04|u 5 |0F0F0S 020108
2070703 o 080508
020 $0 3 ouomeww GMG 020203 3 ouomom
OMOmOm 0805038 HWF ofolod 3 OmOmOv-
0§00 2 020208 (-8 | + o o
osojo§ 0m0mom . o.mo.MOM om0mom
0§030§ ofoso0s |- °[0x0<0%2 N OF0EO3
08080 20t0g080 2008008 030 0 [z °|O20%0%0 o302 0207 of of 0 4005 O
0505040 w%osowomoq‘ovogoMo,oW = =©[0#02020%040¢05050E050 20300
/Ao 0808080030 s080208 0202 o\p ../mvuo 102 Omouo.oxomov.o omom0mom\

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-200

This Materi al

AMD n

PGA Pin Designations (Functional Grouping)

Pin Pin Pin Pin Pin Pin Pin Pin | Pin Pin Pin Pin
Name No. Name No. Name No. Name No. | Name No. Name No.
A2 C4 A24 L2 Deé Li4 D28 M6 Ve C12 Vee F2
A3 A3 A25 K3 D7 Kit2 D29 P4 D12 F3
A4 B3 A26 M1 D8 Li3 D30 P3 G2 F14
A5 B2 A27 N1 D9 N14 | D31 M5 G3 J2
A6 C3 A28 L3 p1o M12| DIC At1 G12 J3
A7 C2 A29 M2 Di1 N13 | ERROR A8 G4 J12
A8 Ci A30 P1 D12 Ni2 HLDA M14 L12 J13
A3 D3 A31 N2 D13 P13 HOLD D14 M3 M4
A10 D2 ADS E14 D14 Pi2 INTR B7 M7 M8
Attt D1 BEG E12 D15 M1t LOCK C10 M13 M10
A12 E3 BET cC13 D16 Ni1 M0 A12 N4 N3
A13 E2 BE2 B13 D17 N10 NA D13 N7 Pé
A14 E1 BE3 A13 D18 P11 NMIL B8 P2 P14
A1 F1 BSi6 Ci14 D19 P10 PEREQ C8 P8 WR B10
A6 G1 BUSY B9 D20 M9 READY Gi13| V,, A2 NC A4
A17 H1 CLK2 F12 D21 Ng RESET C9 A6 B4
A18 H2 Do H12 D22 P9 Vee Al A9 B6
A19 H3 D1 H13 D23 N8 AS Bt B12
A20 Ji1 D2 H14 D24 P7 A7 BS cé
A21 K1 D3 J14 D25 N6 A10 B11 c7
A22 K2 D4 K14 D26 P5 A14 B14 E13
A23 L1 Ds K13 D27 N5 cs ci1 F13

PGA Pin Designations (Sorted by Pin No.)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name | No. Name | No. Name No. Name| No. Name| No. Name
Al Vg B9 BUSY | D3 A9 H1 A17 | L13 D8 N7 Vg
A2 Vg B1o WR D12 Vg H2 A18 | L14 D8 N8 D23
A3 A3 B11 Vs D13 NA H3 A19 | M1 A28 N9 D21
A4 NC B12 NC D14 HOLD H12 Do M2 A29 N10 D17
A5 Vg B13 BE2 E1 A4 H13 D1 M3 V. N11 D16
A6 Vg Bi4 Vg E2 A13 H14 D2 M4V N12 D12
A7 Vg (03] A8 E3 A12 J1 A20 | M5 D31 N13 D1t
A8 ERROR| C2 A7 E12 BEO J2 Ves | M6 D28 N14 D9
A9 Vg c3 A6 E13 NC J3 Ve | M7 Ve P1 A30
A10 Vo ca A2 Et4 ADS JI12 Vg | M8 Vg P2 V.
A1l DIC cs Vee F1 A15 J13 Vg | M9 D20 P3 D30
A12 MIO | Cé NC F2 Ves J14 D3 M10 Vg P4 D29
A13 BE3 c7 NC F3 Ve K1 A21 | M11 D15 Ps D26
A4 Vg cs PEREQ| F12 CLK2 K2 A22 | M12 D10 P6 Vg
Bl Vg c9 RESET| F13 NC K3 A25 | M13 V, P7 D24
B2 A5 cio [OCK [F14 Vg K12 D7 M14 HLDA| P8 V.
B3 A4 c11 Ves G1 A16 K13 Ds N1 A27 P9 D22
B4 NC C12 Vg G2 Vee K14 D4 N2 A31 P10 D19
BS Vg c13 BET G3 Vee L1 A23 | N3 Vg P11 D18
B6 NC Cci4 BSi6 | G2 V, L2 A24 | N4 V. P12 Dit4
B7 INTR | D1 A1 G13 READY L3 A28 | Ns D27 P13 D13
B8 NMI D2 A0 G14 Vg 112 V., | N6 D25 P14 Vg
Am386DXL Microprocessor 1-201

This Material Copyrighted By Its Respective Manufacturer

n AMD

CONNECTION DIAGRAMS
132-Lead Plastic Quad Flat Pack (PQFP) Package

E—V-

i

© O NP QN =

Vee T
o1
p12 L
o1]
1o I
e]
HLDA —
ps
v-:
Ve T
o7 T
pe]
os T
m =
Vee T
pa T
p2
o1
oo —
vee T
Vee]
Vae T
cixe
Vae
TERDY]
A0S
Howo 3

P T S S
©C ® N ® > RN 2O

83 BYIBRBNLS

RE
BES]
BET
B2 T

882

Ve ¢

388828288 28 08288 PRA 2388832
IR IR IRIRIRI R IRIR NN NN IRIRIRIRIRIRIEIE]
131 130 129 128 127 126 125 124 123 122 121 120 119118 117 116 115 114 113 112 111 110 109 108 107 108 106
Top Side View
35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 €0 61
JUidoioourrrrrrrgoogooood
JEERERRES SREE L R EER A e
BF3E
a

Note: Pin 1 is marked for orientation.

N I8
N =g

Ve 8

Ve 2

Ve 8

97 .

Vee
A28
A28
981 A
9 a2z
4 a2
S A
2] Voo
911 Vas
0 v,
891 a2
88 [At9
87 [A8
88 [A17
85 L] Veo
84 A1e
83
82 a5
8t A4
80 Vee
wE At
783 A2
7703 At
763 A0
7501 a9
740 a8
73— Ve
7203 A7
NEd a8
700 as
e a4
68 [a3
67 —J A2

150228-002

1-202

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package

585883 33588 s 288 288 S38 8838888538834

noononnoonnonnoonoonnonnoonnnnnn

100 101 102 103 104 105 106 107 108 108 110 111 112113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 128 130131 132
Ve —] 09 ® 1M ves
A26 L) 08 2177 Vee
A25 =] 97 3o
A24 196 4o
A23 [} 95 s £ bon
A2 o4 ¢ 3 p1o
A21 o3 7309
vssf—] 92 8 7 HLDA
ves[—] 01 9 ps
Ves(CT—] 90 1():vS
A20 [89 Ny,
A9 a8 123 p7
A8 T a7 13) pg
A7 L e 4 = ps
Vec T} 85 B
A6 T gs Ll e RV
VesT= a3 Pin Side View 17 = 0s
as CYs2 02
ale T 3y R =10
vl 80 | s 1N
a3 79 2y,
a2 78 23 o KT
AT e R B v
At0 L= 76 24 ok
A 95 25] Ve
ABE:u N:m
Ve] 73 27) As
AT T 72 28 b~— 0D
aAsC—In 20) mays
Aas 3370 0 CRA
M)69 a1t [~ BED
A3) 68 32 3 BEY

66 65 84 63 62 61 60 59 58 57 56 556 54 53 S2 §1 40 48 47 48 45 44 43 42 41 40 39 38 37 36 3I5 34

150228-002

Notes: Pin 1 is marked for orientation.

Am386DXL Microprocessor 1-203

This Material Copyrighted By Its Respective Manufacturer

n AMD

PQFP Pin Designations (Functional Grouping)

Pin Pin Pin Pin Pin Pin Pin Pin { Pin Pin Pin Pin
Name No. Name No. Name No. | Name No. | Name No. Name No.
A2 67 A24 96 D6 13 D28 112 | V. 56 Ve 64
A3 68 A25 97 D7 12 D29 109 58 65
A4 69 A26 98 D8 9 D30 108 73 66
AS 70 A27 100 Do 7 D31 107 85 80
A6 7 A28 101 D10 6 DT 41 99 83
A7 72 A29 102 Dit s 47 106 90
A8 74 A30 103 D12 4 HLDA 8 110 91
A9 75 A31 104 D13 3 HOLD 28 117 92
A10 76 ADS 27 D14 131 INTR 53 123 105
A1l 77 E0 31 D15 130 LOCK 42 127 111
A12 78 BET 32 D16 129 Mo 40 Ve 1 114
A13 79 BE2 33 D17 128 NA 30 10 122
A14 81 BE3 38 D18 126 NMI 52 1 132
Als 82 BS16 29 D18 125 PEREQ 50 21 WR 43
A16 84 BUSY 46 D20 124 READY 26 23 NC 36
A17 86 CLK2 24 D21 121 RESET 45 25 37
A18 87 Do 20 D22 120 Vee 2 35 39
A19 88 D1 19 D23 119 16 44 59
A20 89 D2 18 D24 118 22 48 60
A21 93 D3 17 D25 116 34 51 61
A22 94 D4 15 D26 115 49 55 62
A23 95 D5 14 D27 113 T 54 57 63
PQFP Pin Designations (Sorted by Pin No.)
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name | No. Name | No. Name No. Name | No. Name| No. Name
1 Ves 23 Ves 45 RESET 67 A2 89 A20 111 Vg
2 Vee 24 CLK2 | 46 BUSY 68 A3 90 Ves 112 D28
3 D13 25 V, 47 ERROR| 69 A4 91 Ve 113 D27
4 D12 |26 FEADY|48 V. 70 As |92 Ve 114 VSS
5 D11 27 ADS 49 Vee 71 A6 93 A21 115 D26
6 D10 28 HOLD | 50 PEREQ| 72 A7 94 A22 116 D25
7 D9 29 BST6 | 51 Ves 73 Vee | 95 A23 17 Ve
8 HLDA | 30 NA 52 NMI 74 A8 96 A24 118 D24
9 D8 31 BEO 53 INTR 75 A9 97 A25 119 D23
10 Vg 32 BET 54 T 76 A10 | 98 A26 120 D22
1 Ves 33 BE2 55 Ves 77 A1l | 99 Vee 121 D21
12 D7 34 Vee 56 Vee 78 A12 | 100 A27 122 Vg
13 D6 35 Ves 57 Ve 79 A13 | 101 A28 123 V.
14 A5 36 NC 58 Vee 80 Ves | 102 A29 124 D20
15 D4 37 NC 59 NC 81 A14 | 103 A30 125 D19
16 Vg 38 BE3 60 NC 82 A15 | 104 A31 126 D18
17 D3 39 NC 61 NC 83 Ves | 105 Vg 127 Vg
18 D2 40 MIC |62 NC 84 A16 | 106 V. 128 D17
19 D1 41 DT 63 NC 85 Ve | 107 D31 129 D16
20 Do 42 [OCK | 64 Ves 86 A17 | 108 D30 130 D15
21 Vg 43 w/R 65 Vs 87 A18 | 109 D29 131 D14
22 Vg 44 Ves 66 Ve 88 A19 | 110 V. 132 Vg

1-204

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

LOGIC SYMBOL
2X Clock ———»]| CLK2 D31-DO <E> Data Bus
< 30 A31-A2
AddrBesz FLT|¢——— Float
& 4 | BE3-BEO
RESET ¢——
A fe— 1 o
—*|BST8 INTR f¢——
Bus | ¢———ADS
Cycle —_
Control | — P NA
——— READY
PEREQ [¢— Math
— WER BUSY j{¢———— } Coprocessor
Control
Bus | «——DC ERROR [¢&—
Cycle
Defintion | MO
4+——|[OCK
HOLD HLDA
Bus Arbitration
Control 15021B-003
Am386DXL Microprocessor 1-205

This Material Copyrighted By Its Respective Manufacturer

n AMD

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

A 80386DXL -33

L OPTIONAL PROCESSING (PQFP Only)

None = Trimmed and Formed PQFP in High Temp Trays
F = Ringed PQFP in Horizontal Tubes
S = Ringed PQFP in Coin-Stack Tubes

TEMPERATURE RANGE
Blank = Commercial (T¢,ee = 0°C to +85°C for PGA)
{Tease = 0°C to +100°C for PQFP)

SPEED OPTION
—40=40 MHz
—33=33 MHz
—25 =25 MHz
—20 =20 MHz

DEVICE NUMBER/DESCRIPTION

80386DXL
Am386DXL High-Performance, Low-Power, 32-Bit
Microprocessor

PACKAGE TYPE
A = 132-Lead Ceramic Pin Grid Array (CGX 132)
NG = 132-Lead Plastic Quad Flat Pack (PQ132, PQB132)

Valld Comblnations

—40 Valid Combinations
-33 Valid Combinations lists configurations planned to
ABO3BEDXL -25 be supported in volume for this device. All speeds
=20 may not be available in all package combinations.
Consult the local AMD sales office to confirm
—33F, 338 availability of specific valid combinations and to

NG80386DXL —25F, -25S check on newly released combinations.
—20F, -20S
1-206 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materia

AMD n

PIN DESCRIPTION

A31-A2

Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS

Address Status (Active Low; Output)

Indicates that_a valid bus cycle definition and address
(W/R, D/C, M/IO, BEO, BE1, BE2, BE3, and A31-A2) are
being driven at the Am386DXL microprocessor pins.
BE3-BEO

Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take partin a
bus cycle.

BS16

Bus Size 16 (Active Low; input)

Allows direct connection of 32-bit and 16-bit databuses.

BUSY

Busy (Active Low; input)

Signals a busy condition from a processor extension.
CLK2

Clock (input)

Provides the fundamental timing for the Am386DXL
microprocessor.

D31-DO

Data Bus (Inputs/Outputs)

Inputs data during memory, 1/0, and interrupt acknow-
ledge read cycles and outputs data during memory and
1/0O write cycles.

D/C

Data/Control (Output)

A bus cycle definition pin that distinguishes data cycles,
either memory or I/O from control cycles which are:
interrupt acknowledge, halt, and instruction fetching.
ERROR

Error (Active Low; Input)

Signals an error condition from a processor extension.
LT

Float (Active Low; Input)

Aninput signal which forces all bi-directional and output
signals, including HLDA, to the three-state condition.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

HLDA

Bus Hold Acknowledge {Active High; Output)
Indicates that the Am386DXL microprocessor has sur-
rendered control of its local bus to another bus master.
HOLD

Bus Hold Request (Active High; input)

Allows another bus master to request control of the local
bus.

INTR

Interrupt Request (Active High; Input)

A maskable input that signals the Am386DXL micropro-
cessor to suspend execution of the current program and
execute an interrupt acknowledge function.

LOCK

Bus Lock (Active Low; Output)

A bus cycle definition pin that indicates that other sys-
tem bus masters are denied access to the system bus
while it is active.

Mi0

Memory /O (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA

Next Address (Active Low; Input)

Used to request address pipelining.

NC

No Connect

Should always remain unconnected. Connection of a
NC pin may cause the processor to malfunction or be
ingompatible with future steppings of the Am386DXL
microprocessor.

NMI

Non-Maskable Interrupt Request

(Active High; Input)

A non-maskable input that signals the Am386DXL mi-
croprocessor to suspend execution of the current pro-
gram and execute an interrupt acknowledge function.
PEREQ

Processor Extension Request (Active High; input)
Indicates that the processor extension has data to be
transferred by the Am386DXL microprocessor.
READY

Bus Ready (Active Low; Input)

Terminates the bus cycle.

RESET

Reset (Active High; Input)

Suspends any operation in progress and places the
AmM386DXL microprocessor in a known reset state.
Vee

System Power (Active High; Input)

Provides the +5-V nominal DC supply input.

Vss

System Ground (Input)

Provides 0 V connection from which all inputs and out-
puts are measured.

WR

Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

Am386DXL Microprocessor

1-207

Copyrighted By Its Respective Mnufacturer

This Materi al

a AMD

BASE ARCHITECTURE

Introduction

The Am386DXL microprocessor consists of a central
processing unit, a memory management unit, and a bus
interface.

The central processing unit consists of the execution
unit and instruction unit. The execution unit contains
the eight 32-bit general purpose registers that are used
for both address calculation, data operations, and a
64-bit barrel shifter used to speed shift, rotate, multiply
and divide operations. The multiply and divide logic
uses a 1-bit per cycle algorithm. The multiply algorithm
stops the iteration when the most significant bits of
the multiplier are all zero. This allows typical 32-bit
multiplies to be executed in under 1 ms. The instruction
unit decodes the instruction op-codes and stores them
in the decoded instruction queue for immediate use by
the execution unit.

The Memory Management Unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability and efficient
sharing. The paging mechanism operates beneath and
is transparent to the segmentation process to allow
management of the physical address space. Each
segment is divided into one or more 4-Kb pages. To
implement a virtual memory system, the Am386DXL
microprocessor supports full restartability for all page
and segment faults.

Memory is organized into one or more variable length
segments, each up to 4 Gb in size. A given region of the
linear address space, a segment, can have attributes
associated with it. These attributes include its location,
size, type (i.e., stack, code or data), and protection
characteristics. Each task on an Am386DXL micropro-
cessor can have a maximum of 16,381 segments of up
to 4 Gb each, thus providing 64 tb (trillion bytes) or
virtual memory to each task.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the
operating system from each other. The hardware
enforced protection allows the design of system with a
high degree of integrity.

The Am386DXL microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro-
tected Virtual Address Mode (Protected Mode). In Reat
Mode, the Am386DXL device operates as a very fast
8086 but with 32-bit extensions, if desired. Real Mode is
required primarily to setup the processor for Protected
Mode operation. Protected Mode provides address to

the sophisticated memory management, paging, and
privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such tasks behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386DXL microprocessor
operating system by the use of paging and the /O
Permission Bitmap.

Finally, to facilitate high-performance system hardware
designs, the Am386DXL microprocessor bus interface
offers address pipelining, dynamic data bus sizing, and
direct Byte Enable signals for each byte of the data bus.
These hardware features are described fully beginning
in the Functional Data section.

Register Overview

The Am386DXL microprocessor has 32 register re-
sources in the following categories.

e General Purpose Registers

* Segment Registers

» Instruction Pointer and Flags

» Control Registers

e System Address Registers

* Debug Registers

o Test Registers

The registers are a superset of the 8086, 80186, and
80286 registers, so all 16-bit 80186 and 80286

registers are contained within the 32-bit Am386DXL
microprocessor.

Figure 1 shows all of Am386DXL microprocessor base
architecture registers that include the general address
and data registers, the instruction pointer, and the flags
register. The contents of these registers are task-spe-
cific, so these registers are automatically loaded with a
new context upon a task switch operation.

The base architecture also includes six directly accessi-
ble segments, each up to 4 Gb in size. The segments
are indicated by the selector values placed in
Am386DXL CPU segment registers of Figure 1. Various
selector values can be loaded as a program executes, if
desired.

The selectors are also task specific, so the segment reg-
isters are automatically loaded with new context upon a
task switch operation.

The other types of registers Control, System Address,
Debug, and Test are primarily used by system software.

1-208

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AvD &Y

General Data and Address Registers

31 16 15 0
AX EAX
BX EBX
CX ECX
DX EDX
S} ESI
Di EDI
BP EBP
SP ESP
Segment Selector Registers
15 0
CS Code
gs Stack
DS
ES Data
FS
GS
Instruction Pointer and Flags Registers
31 16 15 0
P EIP
FLAGS EFLAGS

15021B-004

Figure 1. Base Architecture Registers

Register Descriptions
General-Purpose Registers

The eight general-purpose registers of 32 bits hold data
or address quantities. The general registers, Figure 2,
support data operands of 1, 8, 16, 32, and 64 bits and bit
fields of 1 to 32 bits. They support address operands of
16 and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be ac-
cessed separately. This is done by using the 16-bit
names of the registers AX, BX, CX, DX, SI, Di, BP, and
SP. When accessed as a 16-bit operand, the upper 16
bits of the register are neither used nor changed.

Finally, 8-bit operations can individually access the
lower byte (bits 7-0) and the higher byte (bits 15-8) of
general purpose registers AX, BX, CX, and DX. The
lower bytes are named AL, BL, CL, and DL, respec-
tively. The higher bytes are named AH, BH, CH, and DH,
respectively. The individual byte accessibility offers ad-
ditional flexibility for data operations, but is not used for
effective address calculation.

31 16 15 8 7 0
AH A[X AL EAX
BH B[X BL EBX
CH c|x cL ECX
DH D[X DL EDX
Sl ESI
DI EDI
BP EBP
SP ESP
31 16 15 0
[] er
P
15021B-005

Figure 2. General Registers
and Instruction Pointer

instruction Pointer

The instruction pointer, Figure 2, is a 32-bit register
named EiP. EIP holds the offset of the next instruction
to be executed. The offset is always relative to the base
of the code segment (CS). The lower 16 bits (bits 15-0)
of EIP contain the 16-bit instruction pointer named IP,
which is used by 16-bit addressing.

Flags Register

The Flags Register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS shown in
Figure 3 control certain operations and indicate status of
the Am386DXL microprocessor. The lower 16 bits (bits
15-0) of EFLAGS contain the 16-bit flag register named
FLAGS, which is most useful when executing 8086 and
80286 code.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within Pro-
tected Mode. If set while the Am386DXL micro-
processor is in Protected Mode, the Am386DXL
microprocessor will switch to Virtual 8086 opera-
tion, handling segment loads as the 8086 does,
but generating Exception 13 faults on privileged
op-codes. The VM bit can be set only in Protected
Mode by the IRET instruction (if current privilege
level=0) and by task switches at any privilege
level. The VM bit is unaffected by POPF. PUSHF
always pushes a 0 in this bit, even if executing in
virtual 8086 Mode. The EFLAGS image pushed
during interrupt processing or saved during task
switches will contain a 1 in this bit if the interrupted
code was executing as a Virtual 8086 task.

RF (Resume Flag, bit 16}

The RF flag is used in conjunction with the debug
register breakpoints. It is checked at instruction

This Materi al

Am386DXL Microprocessor 1-209

Copyrighted By Its Respective Mnufacturer

n AMD

boundaries before breakpoint processing. When
RF is set, it causes any debug fault to be ignored
on the next instruction. RF is then automatically
reset at the successful completion of every in-
struction (no faults are signaled) except the IRET
instruction, the POPF instruction, (JMP, CALL,
and INT instructions causing atask switch). These
instructions set RF to the value specified by the
memory image. For example, at the end of the
breakpoint service routine the IRET instruction
can pop an EFLAGS image having the RF bit
set and resume the program’s execution at the
breakpoint address without generating another
breakpoint fault on the same location.

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set to
indicate that the execution of this task is nested
within another task. If set, it indicates that the cur-
rent nested task’s Task State Segment (TSS) has
a valid back link to the previous task's TSS. This
bit is set or reset by control transfers to other
tasks. The value of NT in EFLAGS is tested by the
IRET instruction to determine whether to do an
inter-task return or an intra-task return. A POPF
or an IRET instruction will affect the setting of this
bit according to the image popped at any privilege
level.

IOPL (Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode. IOPL
indicates the numerically maximum CPL (current
privilege level) value permitted to execute /O
instructions without generating an Exception 13
fault or consulting the I/O Permission Bitmap. It
also indicates the maximum CPL value allowing
alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register.
POPF and IRET instruction can alter the IOPL
field when executed at CPL=0. Task switches
can always alter the IOPL field when the new flag
image is loaded from the incoming task’'s TSS.

OF (Overtlow Flag, bit 11)

OD is set if the operation resulted in a sighed over-
flow. Signed overflow occurs when the operation
resulted in carry/borrow into the sign bit (high-
order bit) of the result but did not result in a carry/
borrow out of the high-order bit or vice-versa. For
8-, 16-, 32-bit operations, OF is set according to
overflow at bits 7, 15, 31, respectively.

DF (Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the sg

TF

SF

ZF

AF

PF

CF

instructions. Postincrement occurs if DF is reset.
Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of exter-
nalinterrupts signaled onthe INTR pin. When IF is
reset, externalinterrupts signaled onthe INTR are
not recognized. IOPL indicates the maximum CPL
value allowing alteration of the IF bit when new
values are popped into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of Exception 1 trap
when single-stepping through code. When TF is
set, the Am386D XL microprocessor generates an
Exception 1 trap after the next instruction is exe-
cuted. When TF is reset, Exception 1 traps occur
only as a function of the breakpoint addresses
loaded into debug register DR3—-DRO.

(Sign Flag, bit 7)

SF is set if the high-order bit of the result is set; itis
reset otherwise. For 8-, 16-, 32-bit operations, SF
reflects the state of bits 7, 15, 31, respectively.

(Zero Flag, bit 6)

ZF is set if all bits of the result are 0. Otherwise it is
reset.

(Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addition
and subtraction of packed BCD quantities. AF is
set if the operation resulted in a carry out of bit
3 (addition) or a borrow into bit 3 (subtraction).
Otherwise AF is reset. AF is affected by carry out
of, or borrow into bit 3 only, regardless of overall
operand length: 8, 16, or 32 bits.

(Parity flags, bit 2)

PF is set if the low-order 8 bits of the operation
contain an even number of 1s (even parity). PF is
reset if the low-order 8 bits have odd parity. PFis a
function of only the low-order 8 bits, regardless of
operand size.

(Carry Flag, bit 0)

CF is set if the operation resulted in a carry out
of (addition) or a borrow into (subtraction) the
high-order bit. Otherwise CF is reset. For 8-, 16-,
or 32-bit operations, CF is set according to carry/
borrow at bits 7, 15, or 31, respectively.

Note in these descriptions, set means setto 1 and reset
means reset to 0.

1-210 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materia

AMD n

FLAGS
e
~ =~
332222222222111 1111111
10987654321 0987 654321098765 43210
EFLAGS Reserved for Future Use & f_—‘ 0 '14- 'OLPg g ,': E 'S: 'Z: 0 é 0 ,F:' 1 g
Virtual Mode —T T | L— Carry Flag
Resume Flag Parity Flag
Nested Task Flag Aucxiliary Carry
/O Privilege Level L Zero Flag
Overflow . Sign Flag
Direction Flag Trap Flag
Interrupt Enable
Note: 0 indicates "Reserved for Future Use.” Do not define; see Section Compatibility.
15021B-006

Figure 3. FLAGS Registers

Segment
Registers Descriptor Registers (Loaded Automatically)
Other
i Segment

15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CcS- —
Selector [— —
Selector DS- —_ = }—
Selector ES- — ==
Selector FS— —_ - =
Selector GS— —_ | =

150218-007
Figure 4. Segment Registers and Associated Descriptor Registers
Segment Registers segment; the selectors in DS, ES, FS, and GS indicate

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 4. In
Protected Mode, each segment may range in size from
one byte up to the entire linear and physical space of the
machine, 4 Gb (2*bytes). If a maximum sized segment
is used (limit = FFFFFFFFH) it should be Dword aligned
(i.e., the least two significant bits of the segment base
should be zero). This will avoid a segment limit violation
(Exception 13) caused by the wrap around. In Real Ad-
dress Mode, the maximum segment size is fixed at
64 Kb (2'® bytes).

The six segments addressable at any given moment are
defined by the segment registers: CS, SS, DS, ES, FS,
and GS. The selector in SS indicates the current stack

the current data segments.

Segment Descriptor Registers

The segment descriptor registers are not programmer
visible, yet it is very useful to understand their content.
Inside the Am386DXL microprocessor, a descriptor
register (programmer invisible) is associated with each
programmer-visible segment register, as shown by Fig-
ure 4. Each descriptor register holds a 32-bit segment
base address, a 32-bit segment limit, and the other nec-
essary segment attributes.

When a selector value is loaded into a segment register,
the associated descriptor register is automatically up-
dated with the correct information. in Real Address
Mode, only the base address is updated directly (by

Am386DXL Microprocessor

1-211

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

shifting the selector value four bits to the left), since the R (Reserved, bit 4)
segment maximum limit and attributes are fixed in Real This bit is Reserved for Future Use. When loading
Mode. In Protected Mode, the base address, the limit, CRO care should be taken to not alter the vaiue of
and the attributes are all updated per the contents of the this bit.
segment descriptor indexed by the selector. i .
TS (Task Switched, bit 3)
Whenever amemory reference occurs, the segment de-] i)
scriptor register associated with the segment being TS is automatically set whenever a task switch
used is automatically involved with the memory refer- g%eéahon is per;ormge"d. fTSis sgt, acoproc?s:lo:
ence. The 32-bit segment base address becomes a A -ape op-code will cause a Goprocessor No
: . N vailable trap (Exception 7). The trap handler
component of the linear address calculation, the 32-bit .
L L ! . typically saves a 387DX math coprocessor con-
limit is used for the limit-check operation, and the attrib- text belonging to a previous task, loads a 387DX
utes are checked against the type of memory reference math coprocessor state belonging to the current
requested. task, and clears the TS bit before returning to the
Control Registers faulting coprocessor op-code.
The Am386DXL microprocessor has three control regis- EM (Emulate Coprocessor, bit 2)
ters of 32 bits: CRO, CR2, and CR3 to hold machine The Emulate coprocessor bit is set to cause all
state of a global nature (not specific to an individual coprocessor op-codes to generate a Coprocessor
task). These registers, along with System Address Reg- Not Avaitable fault (Exception?). Itis reset to allow
isters described in the next section, hold machine state coprocessor op-codes to be executed on an ac-
that affects all tasks in the system. To access the Con- tual 387DX math coprocessor (this is the default
trol Registers, load and store instructions are defined. case after reset). Note t!jat thg WAIT op-code is
CRO: Machine Control Register (Includes 80286 not affected by the EM bit setting.
Machine Status Word) MP (Monitor Coprocessor, bit 1)
CRO, shown in Figure 5, contains 6 defined bits for con- The MP bit is used in conjunction with the TS bit to
trol and status purposes. The low-order 16 bits of CRO determine if the WAIT op-code will generate a
are also known as the Machine Status Word (MSW) for Coprocessor Not Available fault (Exception 7)
compatibility with 80286 Protected Mode. LMSW and when TS=1. When both MP=1 and TS =1, the
SMSW instructions are taken as special aliases of the WAIT op-code generates a trap. Otherwise,
load and store CRO operations, where only the low- the WAIT op-code does not generate a trap. Note
order 16 bits of CRO are involved. For compatibility with that TS is automatically set whenever a task
80286 operating systems, the Am386D XL microproces- switch operation is performed.
sor LMSW instructions work in an identical fashion to PE (Protection Enable, bit 0)
the LMSW instruction on the 80286 (i.e., it only operates L
. o The PE bit is set to enable the Protected Mode. If
on the low-order 16 bits of CRO and it ignores the new PE is reset, the processor operates again in Real
bits in CR0). New Am386DXL microprocessor operating Mode. PE l;nay be set by loading MSW or CRO. PE
systems should use the MOV CRO, Reg instruction. can be reset only by a load into CRO. Resetting
The defined CRO bits are described below. the PE bit is typically part of a longer instruction
. . sequence needed for proper transition from Pro-
PG (Paging Enable, bit 31) tected Mode to Real Mode. Note that for strict
The PG bit is set to enable the on-chip paging unit. 80286 compatibility, PE cannot be reset by the
itis reset to disable the on-chip paging unit. LMSW instruction.
31 24 123 16]15 8|7 0
P T|E[M]|P
gloe|ofojojofofo|ojofojo|ojojo|lofo}o olojojojojofofofRfg|ylplEl CRO
MSW
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
15021B-008

Figure 5. Control Register 0

1-212

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materia

amp &4

CR1: Reserved
CR1 is reserved for future processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 6, holds the 32-bit linear address
that caused the last page fault detected. The error code
pushed onto the page fault handler’s stack when itisin-
voked provides additional status information on this
page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 6, contains the physical base
address of the page directory table. The Am386DXL
microprocessor page directory table is always page-
aligned (4 Kb-aligned). Therefore the lowest 12 bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS that changes the value in
CR3, or an explicit load into CR3 with any value, will in-
validate all cached page table entries in the paging unit
cache. Note that if the value in CR3 does not change
during the task switch, the cached page table entries are
not flushed.

System Address Registers

Four special registers are defined to reference the ta-
bles or segments supported by the 80286 CPU and
Am386DXL microprocessor protection model. These
tables or segments are:

GDT (Global Descriptor Table);
IDT (Interrupt Descriptor Table);
LDT (Local Descriptor Table);
TSS (Task State Segment).

The addresses of these tables and segments are stored
in special registers, the System Address and System
Segment Registers illustrated in Figure 7. These regis-
ters are named GDTR, IDTR, LDTR, and TR, respec-
tively. The Protected Mode Architecture section de-
scribes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address and
16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to all
tasks in the system, are defined by 32-bit linear ad-
dresses (subject to page translation if paging is en-
abled) and 16-bit limit values.

LDTRand TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values stored
in the system segment registers. Note that a segment
descriptor register (programmer-invisible) is associated
with each system segment register.

31 24 123 16[15 817 0
Page Fault Linear Address Register CR2
Page Directory Base Register olo|oflololojo|lo|lojo|ojo]| CR3
Note: 0 indicates "Reserved for Future Use.” Do not define; see Section Compatibility.
15021B8-009
Figure 6. Control Registers 2 and 3
System Address Registers
47 32-Bit Linear Base Address 16 15 Limit 0
GDTR
IDTR
System Segment
Registers Descriptor Registers (Automatically L.oaded)
15 ‘O 32-Bit Linear Base Address 32-Bit Segment Limit Attributes
TR Selector
LDTR Selector
15021B-010
Figure 7. System Address and System Segment Registers
Am386DXL Microprocessor 1-213

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

Debug and Test Registers

Debug Registers: The six programmer accessible de-
bug registers provide on-chip support for debugging.
Debug Registers DR3-DRO specify the four linear
breakpoints. The Debug Control Register DR7 is used
to set the breakpoints, and the Debug Status Register
DRé displays the current state of the breakpoints. The
use of the debug registers is described inthe Debugging
Support section.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressable Memo-
ries) in the Translation Look-Aside Buffer portion of the
Am386DXL microprocessor. TR6 is the command test
register, and TR7 is the data register that contains the
data of the Translation Look-Aside buffer test. Theiruse
is discussed in the Testability section. Figure 8 shows
the Debug and Test registers.

Debug Registers

31 0
Linear Breakpoint Address 0 DRo
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Reserved for Future use. Do not define. DR4
Reserved for Future use. Do not define. DRs
Breakpoint Status DRé6
Breakpoint Control DR7

31 Test Registers (For Page Cache) 0
Test Control TR6
Test Status TR7

150218-011

Figure 8. Debug and Test Registers

Register Accessibility

There are a few differences regarding the accessibility
of the registers in Real and Protected Mode. Table 1
summarizes these differences. See the Protected Mode
Architecture section for further details.

Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note certain
Am386DXL microprocessor register bits are Reserved
for Future Use. When reserved bits are called out, treat
them as fully undefined. This is essential for your soft-
ware compatibility with future processors! Follow the
guidelines below:

1. Do not depend on the state of any undefined bits
when testing the values of defined register bits.
Mask them out when testing.

2. Do not depend on the state of any undefined bits
when storing them to memory or another register.

3. Do not depend on the ability to retain information
written into any undefined bits.

4. When loading registers always load the undefined
bits as zeros.

5. However, registers which have been previously
stored may be reloaded without masking.

Depending upon the values of undefined register bits
will make your software dependent upon the unspeci-
fied Am386DXL microprocessor handling of these bits.
Depending on undefined values risks making your soft-
ware incompatible with future processors that define us-
ages for the Am386DXL CPU undefined bits. Avoid any
software dependence upon the state of undefined
Am386DXL CPU register bits.

Table 1. Register Usage

Use In Use In Use in

Registor Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes

Flag Registers Yes Yes Yes Yes IOPL 10PL
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL =0 Yes No No
TR No No PL =0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=0O No No

Notes:PL = 0: The registers can be accessed only when the current privilege level is zero.
IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtua! 8086 Mode.

1-214

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

Instruction Set
Instruction Set Overview
The instruction set is divided into nine categories of
operations.
Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control

These Am386DXL microprocessor instructions are
listed in Table 2.

All Am386DXL microprocessor instructions operate on
either 0, 1, 2, or 3 operands where an operand resides
in a register in the instruction itself or in memory. Most
zero operand instructions (e.g., CLI, STi) take only one
byte. One operand instructions generally are two bytes
long. The average instruction is 3.2-bytes long. Since
the Am386DXL device has a 16-byte instruction queue,
an average of 5 instructions will be prefetched. The use
of two operands permits the following types of common
instructions.

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8-, 16-, or 32-bits long. As a
general rule, when executing code written for the
Am386DXL microprocessor (32-bit code), operands are
8 or 32 bits; when executing existing 80286 or 8086
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to instructions that override the default
length of the operands (i.e., use 32-bit operands for
16-bit code or 16-bit operands for 32-bit code).

Addressing Modes
Addressing Modes Overview

The Am386DXL microprocessor provides a total of 11
addressing modes for instructions to specify operands.
The addressing modes are optimized to allow the effi-
cient execution of high-level languages such as C and
FORTRAN, and they cover the vast majority of data ref-
erences needed by high-level languages.

avo 4
Register and Inmediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands:

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operandis included in
the instruction as part of the op-code.

32-Bit Memory Addressing Modes

The remaining nine modes provide a mechanism for
specifying the effective address of an operand. The lin-
ear address consists of two components: the segment
base address and an effective address. The effective
address is calculated by using combinations of the fol-
lowing four address elements.

Displacement: An 8- or 32-bit immediate value follow-
ing the instruction.

Base: The contents of any general-purpose register.
The Base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general-purpose register ex-
ceptfor ESP. The Index registers are used to access the
elements of an array, or a string of characters.

Scale: The index register's value can be multiplied by a
scale factor either 1, 2, 4, or 8. Scaled index mode is es-
pecially useful for accessing arrays or structures.
Combinations of these 4 components make up the 9
additional addressing modes. There is no performance
penalty for using any of these addressing combinations,
since the effective address calculation is pipelined with
the execution of other instructions.

The one exception is the simultaneous use of Base and
Index components that requires one additional clock.
As shown in Figure 9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA =Base Reg + (Index Reg - Scaling) + Displacement

Direct Mode: The operand’s offset is contained as part
of the instruction as an 8-, 16-, or 32-bit displacement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A Base register contains the
address of the operand.

EXAMPLE: MOV [ECX], EDX

Based Mode: A Base register’s contents is added to a
Displacement to form the operands offset.

EXAMPLE: MOV ECX, [EAX + 24]

This Materi al

Am386DXL Microprocessor 1-215

Copyrighted By Its Respective Mnufacturer

n AMD

Table 2a. Data Transfer Table 2b. Arithmetic instructions
General Purpose Addition
MOV Move operand ADD Add operands
PUSH { Push operand onto stack ADC Add with carry
POP Pop operand off stack INC Increment operand by 1
PUSHA| Push all registers on stack AAA ASCII adjust for addition
POPA | Pop all registers off stack DAA Decimal adjust for addition
XCHG | Exchange operand register Subtraction
XLAT | Translate SuB Subtract operands
Conversion SBB Subtract with borrow
MOVZX | Move byte or Word, Dword with zero extension DEC Decrement operand by 1
MOVSX | Move byte or Word, Dword, sign extended NEG Negate operand
CBwW Convert byte to Word, or Word to Dword CMP Compare operands
CWD Convert Word to Dword DAS Decimal adjust for subtraction
CWDE | Convert Word to Dword extended AAS ASCH adjust for subtraction
cbQ Convert Dword to Qword Muitiplication
Input/Output MUL Multiply Double/Single Precision
IN Input operand from I/O space MUL Integer mufiply
out Output operand to VO space AAM ASCII adjust after mulitiply
Address Object
LEA Load effective address Division
LDS Load pointer into D segment register DIV Divide unsigned
LES Load pointer into E segment register ibv Integer divide
LFsS Load pointer into F segment register AAD ASCII adjust before division

LGS Load pointer into G segment register Table 2c. String Instructions

LSS Load pointer into S (Stack) segment register

MOVS | Move byte or Word, Dword st ring

Flag Manipulation

INS Input string from VO space

LAHF Load A register from Flags OUTS | Output string to /O space

SAHF Store A register in Flags CMPS | Compare byte or Word, Dword string

PUSHF { Push flags onto stack

SCAS | Scan Byte or Word, Dword string

POPF Pop flags off stack

LODS | Load byte or Word, Dword string
PUSHFD | Push EFLAGS onto stack

STOS | Store byte or Word, Dword string

POPFD | Pop EFLAGS off stack

REP Repeat
CcLC Clear Carry Flag REPE/
CLD Clear Direction Flag REPZ | Repeat while equal/zero
CMC Complement Carry Flag RENE/
STC Set Carry Flag REPNZ | Repeat while not equal/not zero
STD Set Direction Flag
1-216 Am386DXL. Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD a

Table 2d. Logical Instructions Table 2f. Program Control Instructions
(continued)
Logicals
NOT NOT 3 Unconditional Transfers
operan CALL Call procedureftask
AND “AND” operands
- RET Return from procedure
OR “Inclusive OR” operands
- JMP Jump
XOR “Exclusive OR" operands
TEST “Test” operands Iteration Controls
Shifts LOOP Loop
SHL/SHR | Shift logical left or right LOOPE/
SALSAR | Shift arthmetic left or right LOOPZ _ | Loop if equal/zero
SHLD/ LOOPNE/ .
SHRD Double shift left or right LOOPNZ | Loop if not equal/not zero
Rotates JCxXz JUMP if register CX=0
ROUROR | Rotate left/right Interrupts
RCL/RCR | Rotate through carry left/right INT Interrupt
Table 2. Bit Manipulation | " INTO Interrupt if overflow
able 2e. Bit Manipulation Instructions IRET Return from interruptitask
Single Bit Instructions CLI Clear interrupt enable
BT Bit Test ST! Set interrupt enable
BTS Bit Test and Set
8TR Bt Tost and Reset Table 2g. High Level Language Instructions
BTC Bit Test and Complement BOUND_| Check array bounds
BSF Bit Scan Forward ENTER | Setup parameter block for entering procedure
BSR Bit Scan Reverse LEAVE Leave procedure
Table 2f. Program Control Instructions Table 2h. Protection Model
Conditional Transfers SGDT Store global descriptor table
SETCC Set byte equal 1o condition code SIDT Store lnterrupt'descnp(or table
JA/JJNBE | Jump it above/not below nor equal STR Store task reglste.r
JAEANB Jump if above or equal/not below S:;DI. Store local descn;')tor table
JB/NAE Jump if below/not above nor equal LGD Load .global descnptlor table
JBEMNA Jump if below or equalinot above LIDT Load interrupt descriptor table
" LTR Load task register
JC Jump if carry 1 ' -
JENZ Jump if equalizero LRDT Lo§d loca descnpto.r .table
JGINLE Jump if greater/not less nor equal ARPL Adjust request.ed privilege level
JGEANL Jump if greater or equal/not less LAR Load access ngvht?
JLINGE Jump if less/not greater nor equal LSL Load segment limit
JLEAUNG Jump if less or equal/not greater VERR/
P - 9 VERW Verify segment for reading or writing
JNC Jump if not carry TMSW Load machine status word (lower 16 bits
JNEINZ | Jump if not equal/not zero of CRO)
JNO Jump if not overflow SMSW Store machine status word
JNPAPO | Jump ff not p.amy/parny odd Table 2I. Processor Control Instructions
JNS Jump if not sign
JO Jump if overflow HLT Harf :
JP/JPE Jump parfty/parity even WAIT Wait until BUSY negated
Js Jump if sign ESC Escape
LOCK Lock Bus
Am386DXL Microprocessor 1-217

This Material Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

Index Mode: An Index register's contents is added to a
Displacement to form the operands offset.

EXAMPLE: ADD EAX, TABLE [ESI]

Scaled Index Mode: An Index register's contents is mul-
tiplied by a scaling factor that is added to a Displace-
ment to form the operands offset.

EXAMPLE: IMUL EBX, TABLE [ESl«4], 7

Based Index Mode: The contents of a Base register is

added to the contents of an Index register to form the
effective address of an operand.

EXAMPLE: MOV EAX, [ESI] [EBX]
Based Scaled Index Mode: The contents of an Index
register is multiplied by a Scaling factor and the resultis
added to the contents of a Base register to obtain the
operands offset.

EXAMPLE: MOV ECX, [EDX « 8] [EAX]

Based Index Mode with Displacement: The contents of
an Index Register and a Base register’s contents and a
Displacement are all summed together to form the
operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The con-
tents of an Index register are multiplied by a Scaling fac-

tor, the result is added to the contents of a Base register
and a Displacement to form the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI « 4] [EBP + 80]

Segment Registers

ss I Base Register
S -1 J
FSES [index Register |
DS Selector
—_—p CS X
Scale
1,2,4,0r8
4 Displacement
acemen
> "‘) (In Instruction)
Effective Segment
Address Limit
Linear
Descriptor Registers Address
- Target Address
Access Rights SS | Selected
Access Rights GS | Segment
Access Rights FS |
Access Rights ES |
Access Rights DS |
Access Rights CS
Limit
»| BaseAddress | _| | ___._ >
Segment Base Address
15021B-012
Figure 9. Addressing Mode Calculations
1-218 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 80286
and the 8086, the Am386DXL microprocessor can exe-
cute 16-bit instructions in Real and Protected Modes.
The processor determines the size of the instructions it
is executing by examining the D bit in the CS segment
descriptor. If the D bit is 0 then all operand lengths and
effective addresses are assumed to be 16 bits long. If
the D bit is 1 then the default length for operands and
addresses is 32 bits. In Real Mode, the default size for
operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386DXL microprocessor is able to
execute either 16- or 32-bitinstructions. This is specified
via the use of override prefixes. Two prefixes, the Oper-
and Size Prefix and the Address Length Prefix, override
the value of the D bit on an individual instruction basis.

Example: The processor is executing in Real Mode and
the programmer needs to access the EAX registers. The
assembler code for this might be MOV EAX, 32-bit
MEMORYOP. An assembler automatically determines
that an Operand Size Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes to
use Scaled Index addressing mode to access an array.
The Address Length Prefix allows the use of MOV DX,
TABLE[ESIe2]. The assembler uses an Address
Length Prefix, since with D=0, the default addressing
mode is 16 bits.

Example: The D bitis 1, and the program wants to store
a 16-bit quantity. The Operand Length Prefix is used to
specify only a 16-bit value: MOV MEM16, DX.

The Operand Length and Address Length prefixes can
be applied separately or in combination to any instruc-
tion. The Address Length Prefix does not allow ad-
dresses over 64 Kb to be accessed in Real Mode. A
memory address that exceeds FFFFH will result ina
General Protection Fault. An Address Length Prefix only
allows the use of the additional Am386DXL micropro-
cessor addressing modes.

When executing 32-bit code, the Am386DXL micropro-
cessor uses either 8- or 32-bit displacements, and any
register can be used as base or index registers. When
executing 16-bit code, the displacements are either 8 or
16 bits, and the base and index register conform to the
80286 model. Table 3 illustrates the differences.

AMD ﬂ
Data Types

The Am386DXL microprocessor supports all of the data
types commonly used in high-level languages.

Bit: A single bit quantity.
Bit Field: A group of up to 32 contiguous bits that spans a
maximum of four bytes.

Bit String: A set of contiguous bits on the Am386DXL
microprocessor bit strings can be up to 4 Gb long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit
quantity. All operations assume a 2's complement
representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.
Unsigned Long Integer (Double Word): An unsigned
32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.

Offset: A 16- or 32-bit offset only quantity that indirectly
references another memory location.

Pointer: A full pointer which consists of a 16-bit segment
selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCHt alphanumeric
or control character.

String: A contiguous sequence of bytes, words or
Dword. A string may contain between 1 byte and 4 Gb.

BCD: A byte {unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the Am386DXL microprocessor is coupled with a
387DX math coprocessor then the following common
Floating Point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. Floating point numbers are supported
by a 387DX compatible math coprocessor.

Figure 10 illustrates the data types supported by the
Am386DXL microprocessor and a 387DX compatible
math coprocessor.

Table 3. Base and Index Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing
Base Register BX, BP Any 32-bit GP Register
Index Register s, Dl Any 32-bit GP Register
Except ESP
Scale Factor None 1,2,4,8
Displacement 0, 8, 16 bits 0, 8, 32 bits
Am386DXL Microprocessor 1-219

Copyrighted By Its Respective Mnufacturer

u AMD

i 7 0 . 7 0
Signed FEPTTT Unsigned [FTT7] [T
Byte Byte
SignBit JfL_ 1
Magnitude Magnitude
1514 1 87 ° 15 +1 o o
Signed TTTTTT RERRRR Unsignedllll[ll FETTTTT
Word Word
Sign Bit 4, LMSB | L 1
Magnitude Magnitude
31 +3 +2 16 15 + o 0
Signed
bame [JTTTTIT[TITITTIT[ITI[TTTTIT T
Word
Sign Bit J, LMsB '
Magnitude
31 +3 +2 16 15 +1 0 0
Unsigned
oo [TTT[TT T[T TI[TTT[TIT[TTT[TIT]TTT
Word
L 1
Magnitude
63 +7 +6 4847 +5 +4 3231 +3 +2 16 15 +1 0 0
Signed
Quad
Word
Sign Bit J, LMsB f
Magnitude
7 +N ° 7 + o7 ° 0
Binary FETTTTI FETTTTTTTTT [TTT
Coded ooe
Decimal
(BCD) BCD Digit N BCD Digit 1 BCD Digit 0
7 +N 0 7 + 07 o °
TTTT TTTTT[TITTTTT
o0
ASCII
ASCIl Character N ASCIl Character 1 ASCII Character 0
7 +N [7 + o7 ° 0
FETTTTI | ll] ITTTTTT 1
Packed eoe
BCD
L—_ Y
Most Significant Digit Least Significant Digit
s N 0 7115+l 0 7/15 o 0
Byte I 1T vee T [TTT]TTT ll |
String

Figure 10. Supported Data Types

150218-013

1-220

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

+2 Gbits -2 Gbits
210
Bit
String
Bit ¢
31 +3 +2 +1 0 0
Short
Shon T T[T I A [T [TIT T T oo
Pointer
L S |
Offset
47 +5 +4 +3 +2 +1 o} °
Long
Pracs) TTT]T rrrprit FTTTTT]ITT]TTd REREEL FTTpTnl
Pointer
L 1 |
Selector Offset
70 +9 +8 +7 +6 +5 +4 +3 +2 +1 [o] o
Floating
Point*
Sign Bit J, L |
Exponent Magnitude
+5 +4 +3 +2 +1 o
o [TTTTTT T TITTTT I OO T[T O[T TTITITTTIPTT T
Bit Fieid
le Bit Field »
= 1 to 32 Bits o
*Supported by 387DX-compatible math coprocessor. 150218-013
Figure 10. Supported Data Types (continued)
1-221

Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Memory Organization

Introduction

Memory on the Am386DXL microprocessor is divided
up into 8-bit quantities (Bytes), 16-bit quantities
(Words), and 32-bit quantities (Dword). Words are
stored in two consecutive bytes in memory with the low-
order byte at the lowest address, the high-order byte at
the highest address. Dwords are stored in four consecu-
tive bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest address.
The address of a word or Dword is the byte address of
the low-order byte.

In addition to these basic data types, the Am386DXL
microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up into
one or more variable length segments, which can be
swapped to disk or shared between programs. Memory
can also be organized into one or more 4-Kb pages.
Finally, both segmentation and paging can be com-
bined, gaining the advantages of both systems. The
Am386DXL microprocessor supports both pages and
segments in order to provide maximum flexibility to the
system designer. Segmentation and paging are com-
plementary. Segmentation is useful for organizing
memory in logical modules, and as such is a tool for the
application programmer, while pages are useful for the
system programmer for managing the physical memory
of a system.

Address Spaces

The Am386DXL microprocessor has three distinct
address spaces: logical, linear, and physical. A logical

address (also known as a virtual address) consists of a
selector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all of
the addressing components (Base, Index, Displace-
ment) discussed in Section Memory Address Modes
into an effective address. Since each task on
Am386DXL CPU has a maximum of 16K (2'-1) selec-
tors, and offsets can be 4 Gb (2% bits), this gives a total
of 2 bits or 64 tb of logical address space pertask. The
programmer sees this virtual address space.

The segmentation unit translates the logical address
space into a 32-bit linear address space. If the paging
unit is not enabled then the 32-bit linear address corre-
sponds to the physical address. The paging unit trans-
lates the linear address space into the physical address
space. The physical address is what appears on the
address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs the
translation of the logical address into the linear address.
In Real Mode, the segmentation unit shifts the selector
left four bits and adds the result to the offset to form
the linear address. While in Protected Mode, every se-
lector has a linear base address associated with it. The
linear base address is stored in one of two operating
systemtables (i.e., the Local Descriptor Table or Global
Descriptor Table). The selector’s linear base address is
added to the offset to form the final linear address.

Figure 11 shows the relationship between the various
address spaces.

Effective Address Calculation
Index
Base Displacement
Scale 31 0
1,.2,4,8
-rf\, BE3-BEG
T -
As1-A2 Physical
a2 Effective Address Memory
15 2 0 ,l
R Logical or Segmentation 32 Paging Unit 32
Virtual Address . T (Optional Use) 7
Selector l: 4 intual res: Unit Linear Physical
7
- Descriptor Index Address Address
Segment Register
15021B-014
Figure 11. Address Translation
1-222 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

Segment Register Usage

The main data structure used to organize memory is the
segment. On the Am386DXL microprocessor, seg-
ments are variable sized blocks of linear addresses that
have certain attributes associated with them. There are
two main types of segments: code and data. The seg-
ments are of variable size and canbe as small as 1 byte
or as large as 4 Gb (2*2 bytes).

In order to provide compact instruction encoding andin-
crease processor performance, instructions do not need
to explicitly specify which segment register is used. A
default segment register is automatically chosen ac-
cording to the rules of Table 4 (Segment Register Selec-
tion Rules). In general, data references use the selector
contained in the DS register; Stack references use the
SS register; and instruction fetches use the CS register.
The contents of the Instruction Pointer provides the off-
set. Special segment override prefixes allow the explicit
use of a given segment register, and override the implicit
rules listed in Table 4. The override prefixes also allow
the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all 6 seg-
ments could have the base address set to zero and
create a system with a 4-Gb linear address space. This
creates a system where the virtual address space is the
same as the linear address space. Further details of
segmentation are discussed in Section Protected Mode
Architecture.

AMD z‘
/0 Space

The Am386DXL microprocessor has two distinct physi-
cal address spaces: Memory and /O. Generally, periph-
erals are placed in I/O space although the Am386DXL
CPU also supports memory-mapped peripherals. The
IO space consists of 64 Kb, it can be divided into 64K
8-bit ports, 32K 16-bit ports, or 16K 32-bit ports, or any
combination of ports that add up to less than 64 Kb. The
64K I/O address space refers to physical memory rather
than linear address since VO instructions do not go
through the segmentation or paging hardware. The
M/0 pin acts as an additional address line, thus allow-
ing the system designer to easily determine which ad-
dress space the processor is accessing.

The IO ports are accessed via the IN and OouUT 110 in-
structions, with the port address supplied as an immedi-
ate 8-bit constant in the instruction or inthe DX register.
All 8- and 16-bit port addresses are zero extended on
the upper address lines. The /O instructions cause the
M/IO pin to be driven Low.

I/O port addresses 00F8H through 00FFH are reserved.
Interrupts

Interrupts and Exceptions

interrupts and exceptions alter the normal program
tlow, in order to handle external events, to report errors
or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used to

Table 4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference egment Use Prefixes Possible
Code Fetch CS None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, SS None
IRET, RET Instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(Dl is Base Register)

Other Data References with

Effective Address Using Base

Register of:
[EAX] DS CS, SS, ES, FS, GS
[EBX] DS CS, SS,ES, FS,GS
{ECX] DS CS, SS, ES, FS,GS
[EDX] DS CS, SS,ES, FS,GS
[ESI) DS CS, SS,ES, FS,GS
[EDY DS Cs, SS, ES, FS, GS
[EBP] SS CS, SS, ES, FS,GS
[ESP] SS CS, SS, ES, FS,GS

Am386DXL Microprocessor

1-223

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

handle asynchronous external events while exceptions
handle instruction faults. Atthough a program can gen-
erate a software interrupt via an INT n instruction, the
processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable or
non-maskable. Interrupts are serviced after the execu-
tion of the current instruction. After the interrupt handler
is finished servicing the interrupt, execution proceeds
with the instruction immediately after the interrupted in-
struction. The differences between the interrupts are
discussed in Sections Maskable Interrupt and Non-
Maskable Interrupt.

Exceptions are classified as faults, traps, or aborts de-
pending on the way they are reported, and whether or
not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
A fault would occur in a virtual memory system, when
the processor referenced a page or a segment that was
not present. The operating system wouid fetch the page
or segment from disk, and then the Am386DXL
microprocessor would restart the instruction. Traps are
exceptions that are reported immediately after the exe-
cution of the instruction that caused the problem. User
defined interrupts are examples of traps. Aborts are

exceptions that do not permit the precise location of the
instruction causing the exception to be determined.
Aborts are used to report severe errors, such as a hard-
ware error or illegal values in system tables.

Thus, when an interrupt service routine has been com-
pleted, execution proceeds from the instruction immedi-
ately following the interrupted instruction. On the other
hand, the return address from an exception fautt routine
will always point at the instruction causing the exception
and include any leading instruction prefixes. Table 5
summarizes the possible interrupts for the Am386DXL
microprocessor and shows where the return address
points.

The Am386DXL microprocessor has the ability to han-
dle up to 256 different interrupts/exceptions. In order to
service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service routine.
In Real Mode (see Section Real Mode Introduction),
the vectors are 4 byte quantities, a Code Segment
plus a 16-bit offset; in Protected Mode, the interrupt vec-
tors are 8 byte quantities that are put in an Interrupt De-
scriptor Table (see Section Introduction). Of the 256
possible interrupts, 32 are Reserved for Future Use, the
remaining 224 are free to be used by the system
designer.

Table 5. interrupt Vector Assignments

Return Addresﬁ
Points to
interrupt Instruction Which Can Faulting
Function Number Cause Exception Instruction Type
Divide Error 0 Div, IDIV Yes FAULT
Debug Exception 1 Any instruction Yes TRAP*
NMI Interrupt 2 INT 2 or NM! No NMI
One Byte Interrupt 3 INT No TRAP
Interrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-Code 6 Any illegal instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fautlt 8 Any instruction that can generate an Exception ABORT
Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 11 Segment register instructions Yes FAULT
Stack Fault 12 Stack references Yes FAULT
General Protection Fault 13 Any memory reference Yes FAULT
Page Fault 14 Any memory access or code fetch Yes FAULT
Reserved for Future Use 15
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-31
Two Byte Interrupt 0-255 INTn No TRAP

“Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.

1-224

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materia

AMD a

Interrupt Processing
When an interrupt occurs the following actions happen.

m First, the current program address and the Flags
are saved on the stack to allow resumption of the
interrupted program.

m Next, an 8-bit vector is supplied to the Am386DXL
microprocessor that identifies the appropriate entry
in the interrupt table. The table contains the starting
address of the interrupt service routine. Then, the
user supplied interrupt service routine is executed.

® Finally, when an IRET instruction is executed the old
processor state is restored and program execution
resumes a the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386DXL
microprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT in-
structions contain or imply the vector; maskable hard-
ware interrupts supply the 8-bit vector via the interrupt
acknowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way used by
the Am386DXL microprocessor to respond to asynchro-
nous external hardware events. A hardware interrupt
occurs when the INTR is pulled High and the Interrupt
Flag bit (IF) is enabled. The processor only responds to
interrupts between instructions (REPeat String instruc-
tions have an interrupt window between memory
moves, which allows interrupts during long string
moves). When an interrupt occurs, the processor reads
an 8-bit vector supplied by the hardware that identifies
the source of the interrupt (one of 224 user defined inter-
rupts). The exact nature of the interrupt sequence is dis-
cussed in Section Functional Data.

The IF bitin the EFLAGS register is reset when aninter-
rupt is being serviced. This effectively disables servicing
additional interrupts during an interrupt service routine.
However, the IF bit may be set explicitly by the interrupt
handier to allow the nesting of interrupts. When an IRET
instruction is executed the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing
very high priority interrupts. A common example of
the use of a non-maskable interrupt (NMI) wouid be to
activate a power failure routine. When the NMi input
is pulled High it causes an interrupt with an internally
supplied vector value of 2. Uniike a normal hardware
interrupt, no interrupt acknowledgment sequence is per-

- formed for NMI.

While executing the NMI servicing procedure, the
AmM386DXL microprocessor will not service further NMI
requests until an interrupt return (IRET) instruction is
executed or the processor is reset. If NMI occurs while
currently servicing an NM, its presence will be saved for

servicing after executing the first IRET instruction. The
iF bit is cleared at the beginning of an NMi interrupt to
inhibit further INTR interrupts.

Software interrupts

A third type of interrupt/exception for the Am386DXL
microprocessor is the software interrupt. An INT n in-
struction causes the processor to execute the interrupt
service routine pointed to by the nth vector in the inter-
rupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3 or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in his program as a debugging tool.

A final type of software interrupt is the single step inter-
rupt. It is discussed in Section Debugging Support.

Interrupt and Exception Priorities

Interrupts are externally-generated events. Maskable
Interrupts (on the INTR input) and Non-Maskable Inter-
rupts (on the NMI input) are recognized at instruction
boundaries. When NMI and maskable INTR are both
recognized at the same instruction boundary, the
Am386DXL microprocessor invokes the NMI service
routine first. If after the NMI service routine has been in-
voked, maskable interrupts are still enabled, then the
Am386DXL CPU will invoke the appropriate interrupt
service routine.

Table 6a. Am386DXL Microprocessor Priority for

Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2. INTR

Exceptions are internally-generated events. Exceptions
are detected by the Am386DXL microprocessor if in the
course of executing an instruction, the Am386DXL CPU
detects a problematic condition. The Am386DXL micro-
processor thenimmediately invokes the appropriate ex-
ception service routine. The state of the Am386DXL
CPU is such that the instruction causing the exception
can be restarted. if the exception service routine has
taken care of the problematic condition, the instruction
will execute without causing the same exception.

It is possible for a single instruction to generate several
exceptions (for example, transferring a single operand
could generate two page faults if the operand location
spans two not present pages). However, only one ex-
ception is generated upon each attempt to execute the
instruction. Each exception service routine should cor-
rect its corresponding exception, and restart the instruc-
tion. In this manner, exceptions are serviced until the in-
struction executes successfully.

As the Am386DXL microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 6b. This cycle is repeated
as each instruction is executed and occurs in parallel
with instruction decoding and execution.

Am386DXL Microprocessor

1-225

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

Instruction Restart

The Am386DXL microprocessor fully supports restart-
ing allinstructions after faults. If an exception is detected
in the instruction to be executed (Exception Categories
4 through 10 in Table 6b), the Am386DXL device in-
vokes the appropriate exception service routine. The
Am386DXL microprocessor is in a state that permits re-
start of the instruction, for all cases but those in Table 6c.
Note that all such cases are easily avoided by proper de-
sign of the operating system.

Table 6b. Sequence of Exception Checking

Consider the case of the Am386DXL microprocessor having
just completed an instruction. It then performs the following
checks before reaching the point where the next instruction is
completed:

1. Check for Exception 1 Traps from the instruction just
completed (single-step via Trap Flag or Data Breakpoints
set in the Debug Registers).

2. Check for Exception 1 Faults in the next instruction
(Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

Check for external NM! and INTR.

4. Check for Segmentation Faults that prevented fetching
the entire next instruction (Exceptions 11 and 13).

5. Check for Paging Faults that prevented fetching the
entire next instruction (Exception 14).

6. Checkfor Faults decoding the next instruction (Exception
6 if illegal op-code; Exception 6 if in Real Mode or in
Virtual 8086 Mode and attempting to execute an
instruction for Protected Mode only (see Section
Protection and /O Permission Bitmap); or Exception 13 if
instruction is longer than 15 bytes, or privilege violation in
Protected Mode (i.e., not at IOPL or at CPL = 0)).

7. WAIT op-code, check if TS = 1 and MP = 1 (Exception 7
if both are 1).

8. If ESCAPE op-code for numeric coprocessor, check if
EM=1o0r TS =1 (Exception 7 if either are 1).

9. K WAIT opcode or ESCAPE op-code for numeric
coprocessor, check ERROR input signal (Exception 16 if
ERROR input is asserted).

10. Check in the following order for each memory reference
required by the instruction.

a. Check for Segmentation Faults that prevent trans-
ferring the entire memory quantity
(Exceptions 11, 12, 13),

b. Check for Page Faults that prevent transferring
the entire memory quantity (Exception 14).

Note that the order stated supports the concept of the paging mecha-
nism being underneath the segmentation mechanism. Therefore, for
any given code or data reference in memory, segmentation excep-
tions are generated before paging ptions are g d.

Table 6c. Conditions Preventing
Instruction Restart

1. Aninstruction causes a task switch to a task whose Task
State Segment (TSS) is partially not present. (An entire
not present TSS is restartable.) Partially present TSS's
can be avoided either by keeping the TSS's of such tasks
present in memory or by aligning TSS segments to reside
entirely within a single 4K page (for TSS segments of
4 Kb or less).

2. Acoprocessor operand wraps around the top of a 64-Kb
segment or a 4-Gb segment and spans three pages; and
the page holding the middle portion of the operand is not
present. This condition can be avoided by starting at a
page boundary any segments containing coprocessor
operands if the segments are approximately 64200 Kb
or larger (i.e., large enough for wraparound of the
coprocessor operand to possibly occur).

Note that these conditions are avoided by using the operating system
designs mentioned in this table.

Double Fault

A Doubie Fault (Exception 8) resuits when the proces-
sor attempts to invoke an exception service routine for
the segment exceptions (10, 11, 12, or 13), but in the
process of doing so, detects an exception other than a
Page Fault (Exception 14).

A Double Fault (Exception 8) will also be generated
when the processor attempts to invoke the Page Fault
(Exception 14) service routine, and detects an excep-
tion other than a second Page Fault. In any functional
system, the entire Page Fault service routine must re-
main present in memory.

Double Page faults however do not raise the Double
Fault exception. If a second Page Fault occurs while the
processor is attempting to enter the service routine for
the first time, then the processor will invoke the Page
Fault (Exception 14) handler a second time rather than
the Double Fault (Exception 8) handler. A subsequent
fault, though, wiil lead to shutdown.

When a Double Fault occurs, the Am386DXL micropro-
cessor invokes the exception service routine for
Exception 8.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 7. The Am386DXL
microprocessor will then start executing instructions
near the top of physical memory, at location
FFFFFFFOH. When the first Inter-Segment Jump or Call
is executed, address lines A31-A20 will drop Low for
CS-relative memory cycles, and the Am386DXL micro-
processor will only execute instructions in the lower 1
Mb of physical memory. This allows the system de-
signer 1o use a ROM at the top of physical memory to in-
itialize the system and take care of Resets.

1-226

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

RESET forces the Am386DXL microprocessor to termi-
nate all execution and local bus activity. No instruction
execution or bus activity will occur as long as Reset
is active. Between 350- and 450-CLK2 periods after Re-
set becomes inactive, the Am386DXL device will start
executing instructions at the top of physical memory.

Table 7. Register Values after Reset

Flag Word uuuuo002H Note 1

Machine Status Word (CR0) UUUUUUUOH Note 2

Instruction Pointer 0000FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX Register Component and Note 5
Stepping ID

All Other Registers Undefined Note 4

Notes:

1. EFLAGS Register. The upper 14 bits of the EFLAGS register are
undefined, VM (Bit 17) and RF (Bit 16) and 0 as are all other de-
fined fiag bits.

2. CRO: (Machine Status Word). All of the defined fields in the CRO
are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and PE
Bit 0).

3. The code Segment Register (CS) will have its Base Address set
to FFFFOO0OH and Limit set to OFFFFH.

4. Allundefined bits are Reserved for Future Use and should notbe
used.

5. DX register always holds ponent and stepping identifier (see
Section Component and Revision Identifiers). EAX register hoids
self-test signature if self-test was requested (see Section Self-
Test Signature).

Testability
Self-Test

The Am386DXL microprocessor has the capability to
perform a self-test. The self-test checks the function of
all the Control ROM and most of the non-random logic
of the part. Approximately one-half of the Am386DXL
microprocessor can be tested during self-test.

Self-Test is initiated on the Am386DXL microprocessor
when the RESET pin transitions from High to Low,
and the BUSY pin is Low. The self-test takes about
2**19 clocks or approximately 26 ms with a 20-MHz
Am386DXL device. At the completion of self-test, the
processor performs reset and begins normal operation.
The part has successfully passed self-test if the con-
tents of the EAX register are zero (0). If the results of
EAX are not zero then the self-test has detected aflawin
the pant.

TLB Testing

The Am386DXL microprocessor provides a mechanism
for testing the Translation Look-Aside Buffer (TLB) if

desired. This particular mechanism is unique to the
Am386DXL CPU and may not be continued in the same
way in future processors. When testing the TLB, paging
must be turned off (PG = 0 in CRO) to enable the TLB
testing hardware and avoid interference with the test
data being written to the TLB.

There are two TLB testing operations:
1. Write entries into the TLB; and,

2. Perform TLB lookups. Two test registers, shown in
Figure 12, are provided for the purpose of testing.
TR6 is the test command register and TR7 is the test
data register. The fields within these registers are
defined below.

C: This is the command bit. For awrite into TR6to cause
an immediate write into the TLB entry, write a 0 to this
bit. For a write into TR6 to cause an immediate TLB
lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB . On a
TLB write, a TLB entry is allocated to this linear address
and the rest of that TLB entry is set per the value of TR7
and the value just written into TR6. On a TLB lookup, the
TLB is interrogated per this value and if one and only
one TLB entry matches, the rest of the fields of TR6 and
TR7 are set from the matching TLB entry.

Physical Address: This is the data field of the TLB. On
a write to the TLB, the TLB entry allocated to the linear
address in TR6 is set to this value. On a TLB lookup, the
data field (physical address) from the TLB is read out to
here.

PL: On a TLB write, PL = 1 causes the REP field of TR7
to select which of four associative blocks of the TLB is to
be written, but PL = 0 allows the internal pointer in the
paging unit to select which TLB block is written. On a
TLB lookup, the PL bit indicated whether the lookup was
a hit (PL gets set to 1) or a miss (PL gets reset to 0).
V: The valid bit for this TLB entry. All valid bits can aiso
be cleared by writing to CR3.

D, D: The dirty bit for/from the TLB entry.
U, U: The user bit for/from the TLB entry.
W, W: The writable bit for/from the TLB entry.

For D, U and W, both the attribute and its complement
are provided as tag bits to permit the option of a don't
care on TLB lookups. The meaning of these pairs of bits
is given in the following table.

X X Effect During Value of Bit
TLB Lookup X after TLB Write
o [¢] Miss All Bit X becomes undefined
0 1 Match if X=0 | Bit X becomes 0
1 [Match if X=1 | Bit X becomes 1
1 1 Match All Bit X becomes undefined

Am386DXL Microprocessor

1-227

Copyrighted By Its Respective Mnufacturer

n AMD

For writing a TLB entry:
1. Write TR7 for the desired physical address, PL and
REP values; and,

2. Write TR6 with the appropriate linear address, efc.,
(be sure to write C =0 for write command).

For looking up (reading) a TLB entry:

1. Write TR6 with the appropriate linear address (be
sure to write C =1 for lookup command); and,

2. Read TR7 and TR&. If the PL bit in TR7 indicates a
hit, then the other values reveal the TLB contents. If
PL indicates a miss, then the othervalues in TR7 and
TR6 are indeterminate.

Debugging Support
The Am386DXL microprocessor provides several fea-

tures that simplify the debugging process. The three
categories of on-chip debugging aids are:

1. The code execution breakpoint op-code (0CCH);

2. The single-step capability provided by the TF bit in
the flag register; and,

3. The code and data breakpoint capability provided by
the Debug Registers DR3—-DR0, DR6, and DR7.

Breakpoint Instruction

A single-byte-op-code breakpoint instruction is avail-
able for use by software debuggers. The breakpoint op-
code is 0CCh and generates an Exception 3 trap when
executed. In typical use, a debugger program can piant
the breakpoint instruction at all desired code execution
breakpoints. The single-byte breakpoint op-code is an
alias for the two-byte general software interrupt instruc-
tion, INT n, where n = 3. The only difference between
INT 3(0CCh) and INT nisthat INT 3 is never IOPL-sen-
sitive but INT nis IOPL-sensitive in Protected Mode and
Virtual 8086 Mode.

31

12]11

o

Linear Address

<
o
ol
(=
cl
=
=
(=)

o|ojo

(¢}
3

Physical Address

ojofofo]o]ojo|P|RePfoo]| TR7

Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.

15021B-015

Figure 12. Test Registers

This Materi al

1-228 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materia

AMD n

Single-Step Trap

If the single-step tlag (TF, bit 8) in the EFLAGS register
is found to be set at the end of an instruction, a single-
step exception occurs. The single-step exception isauto
vectored to Exception 1. Precisely, Exception 1 occurs
as a trap after the instruction following the instruction
that set TF. In typical practice, a debugger sets the TF bit
of a flag register image on the debugger’s stack. Itthen
typically transfers control to the user program and loads
the flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one in-
struction of the user program.

Since the Exception 1 occurs as a trap (that is, it occurs
atter the instruction has already executed), the CS:EIP
pushed onto the debugger’s stack points to the next
unexecuted instruction of the program being debugged.
An Exception 1 handler, merely by ending with an IRET
instruction, can therefore efficiently support single-
stepping through a user program.

Debug Registers

The Debug Registers are an advanced debugging fea-
ture of the Am386DXL microprocessor. They allow data
access breakpoints as well as code execution break-
points. Since the breakpoints are indicated by on-chip
registers, an instruction execution breakpoint can be
placed in ROM code or in code shared by severaltasks,
neither of which can be supported by the INT 3 break-
point op-code.

The Am386DXL microprocessor contains 6 Debug Reg-
isters, providing the ability to specify up to four distinct
breakpoint addresses, breakpoint control options, and
read breakpoint status. Initially after reset, breakpoints
will occur unless the debug registers are programmed.
Breakpoints set up in the Debug Registers are auto
vectored to Exception 1.

Linear Address Breakpoint Registers (DR3-DRO)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DR3-DRO0, shown in Fig-
ure 13. The breakpoint addresses specified are 32-bit
linear addresses. Am386DXL microprocessor hard-
ware continuously compares the linear breakpoint

addresses in DR3-DR0 with the linear addresses gen-
erated by executing software (a linear address isthe re-
sult of computing the effective address and adding the
32-bit segment base address). Note that if paging is not
enabled the linear address equals the physical address.
If paging is enabled, the linear address is translated to a
physical 32-bit address by the on-chip paging unit. Re-
gardless of whether paging is enabled or not, however,
the breakpoint registers hold linear addresses.

Debug Control Register (DR7)

A Debug Control Register, DR7, shown in Figure 13,
allows several debug contro! functions, such as ena-
bling the breakpoints and setting up other control op-
tions for the breakpoints. The fields within the Debug
Control Register, DR7, are as follows.

LENi (Breakpoint Length Specification Bits)

A 2-bit LEN field exists for each of the four breakpoints.
LEN specifies the length of the associated breakpoint
field. The choices for data breakpoints are: 1 byte, 2
bytes, and 4 bytes. Instruction execution breakpoints
must have a length of 1 (LENi = 00). Encoding of the
LENi field is as follows.

Usage of Least
Significant Bits in

LENi Breakpoint Breakpoint Address
Encoding Field Width Register i, (I=0-3)

00 1 byte All 32-bits used to specify
a single-byte breakpoint
field.

01 2 bytes A31-A1 used to specify
a two-byte, word-aligned
breakpoint field. A0 in
Breakpoint Address
Register is not used.

10 Undefined—

do not use

this encoding

11 4 bytes A31-A2 used to specify

a four-byte, Dword-aligned
breakpoint field. A0 and
A1 in Breakpoint Address

Register are not used.

Am386DXL Microprocessor

1-229

Copyrighted By Its Respective Mnufacturer

n AMD

31 16 15 0
Breakpoint 0 Linear Address DRo
Breakpoint 1 Linear Address DR1
Breakpoint 2 Linear Address DR2
Breakpoint 3 Linear Address DR3
Reserved for Future Use. Do not define. DR4
Reserved for Future Use. Do not define. DRs

B|B!B BlB{B|B
0 TIslp olojo0jo|o|O|O]|O]O ala2l7lo DR6
LEN |R[W| LENJR|W|LEN |R|W]|LEN |R}{W G GiL|G|L|G|L|G]|L]|GIL R
3 |3]|3 2 [2|2] 1 111 0 Jo|o ofo D ojojo E|E|3}3]2}2]1f1|0]|0O DR7
31 16 15 0
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
Figure 13. Debug Registers 15021B-016

The LENi field controls the size of breakpoint field i by RWi (Memory Access Qualifier Bits)
controlling whether all low-order linear address bits 5 .y By field exists for each of the four breakpoints.

in the breakpoint address register are used to detect The 2-bit RW field specifi

H e - pecifies the type of usage that must
the breakpoint event. Therefore, all breakpoint fields : - h ! .
are aligned; 2-byte breakpoint fields begin on Word occur in order to activate the associated breakpoint.

boundaries and 4-byte breakpoint fields begin on Dword RW Usage

boundaries. Encoding Causing Breakpoint

The following is an example of various size breakpoint 00 Instruction execution only

fields. Assume the breakpoint linear address in DR2 is 01 Data writes only

00000005H. In that situation, the following illustration y . .

indicates the region of the breakpoint field for lengths of 10 Undefined—do not use this encoding

1, 2, or 4 bytes. 11 Data reads and writes only

DR2 =00000005H; LEN2=00B RW encoding 00 is used to set up an instruction execu-
31 0 tion breakpoint. RW encodings 01 or 11 are used to set

up write-only or read/write data breakpoints.

00000008H Note that instruction execution breakpoints are taken

bkpt fid2 00000004H as faults (i.e., before the instruction executes), but

00000000H data breakpoints are taken as traps (i.e., after the data
transfer takes place).

DR2 = 00000005H; LEN2=01B Using LENI and RWi to Set Data Breakpoint |

31 0 A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints, RWi
00000008H can = 01 (write only) or 11 (write/read). LEN can = 00,

< bkptfid2 —» |00000004H 01 Or Tt ‘ -
] If a data access entirely or partly falls within the data

00000000H breakpoint field, the data breakpoint condition has oc-
curred, and if the breakpoint is enabled, an Exception 1

DR2 = 00000005H; LEN2=11B trap will occur.
31 0 Using LENI and RWi to Set Instruction Execution
00000008H Breakpoint i
An instruction execution breakpoint can be set up
<4— bkpt fid2 —» 00000004H by writing address of the beginning of the instruction

00000000H (including prefixes if any) into DRi (i=0-3). RWi

1-230 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materia

AMD n

must =00 and LEN must =00 for instruction execution
breakpoints.

If the instruction beginning at the breakpoint address is
about to be executed, the instruction execution break-
point condition has occurred, and if the breakpointis en-
abled, an Exception 1 fault will occur before the instruc-
tion is executed.

Note that an instruction execution breakpoint address
must be equal to the beginning byte address of an in-
struction (including prefixes) in order for the instruction
execution breakpoint to occur.

GD (Global Debug Register Access Detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The GD
bit, when set, provides extra protection against any De-
bug Register access even in Real Mode or at privilege
level 0 in Protected Mode. This additional protectionfea-
ture is provided to guarantee that a software debugger
(or \CE-386) can have full control over the Debug Regis-
ter resources when required. The GD bit, when set,
causes an Exception 1 fault if an instruction attempts to
read or write any Debug Register. The GD bit is then
automatically cleared when the Exception 1 handler is
invoked, allowing the Exception 1 handler free access to
the debug registers.

GE and LE (Exact Data Breakpoint Match, Global
and Local)

If either GE or LE is set, any data breakpoint trap will be
reported exactly after completion of the instruction that
caused the operand transfer. Exact reporting is pro-
vided by forcing the Am386D XL microprocessor execu-
tion unit to wait for completion of data operand transfers
before beginning execution of the next instruction.

If exact data breakpoint match is not selected, data
breakpoints may not be reported until several instruc-
tions later or may not be reported at all. When enabling a
data breakpoint, it is therefore recommended to enable
the exact data breakpoint match.

When the Am386DXL microprocessor performs a task
switch, the LE bit is cleared. Thus, the LE bit supports
fast task switching out of tasks that have enabled the ex-
act data breakpoint match for their task-local break-
points. The LE bit is cleared by the processor during a
task switch to avoid having exact data breakpoint match
enabled inthe new task. Note that exact data breakpoint
match must be re-enabled under software control.

The Am386DXL microprocessor GE bit is unaffected
during a task switch. The GE bit supports exact data
breakpoint match that is to remain enabled during all
tasks executing in the system.

Note that instruction execution breakpoints are always
reported exactly, whether or not exact data breakpoint
match is selected.

Gl and LI (Breakpoint Enable, Global and Local)

If either Gi or Liis set, thenthe associated breakpoint (as
defined by the linear address in DRI, the length in LENi
and the usage criteria in RWi) is enabled. If either Gior
Liis set and the Am386DXL microprocessor detects the
ith breakpoint condition, then the Exception 1 handleris
invoked.

When the Am386DXL microprocessor performs a task
switchto a new Task State Segment (TSS), all Libits are
cleared. Thus, the Li bits support fast task switching out
of tasks that use some task-local breakpoint registers.
The Li bits are cleared by the processor during a task
switch to avoid spurious exceptions in the new task.
Note that the breakpoints must be enabled under soft-
ware control.

All Am386DXL microprocessor Gi bits are unaffected
during a task switch. The Gi bits support breakpoints
that are active in all tasks executing in the system.

Debug Status Register (DR6)
A Debug Status Register, DR6, shown in Figure 13,
allows the Exception 1 handler to easily determine why

it was invoked. Note the Exception 1 handler can be
invoked as a result of one of several events.

1. DRO Breakpoint fault/trap.

. DR1 Breakpoint faulttrap.

DR2 Breakpoint fault/trap.

. DR3 Breakpoint faultttrap.

. Single-step (TF) trap.

. Task switch trap.

Fault due to attempted debug register access when
GD=1.

The Debug Status Register contains single-bit flags for
each of the possible events invoking Exception 1. Note
below that some of these events are faults (exception
taken before the instruction is executed), while other

events are traps (exception taken after the debug
events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user program
to avoid future confusion in identifying the source of
Exception 1.

The fields within the Debug Status Register, DR6 are as
follows.

Bi (Debug Fault/Trap Due to Breakpoint 0-3)

Four breakpoint indicator flags, B3-B0, correspond
one-to-one with the breakpoint registers in DR3-DR0. A
flag Biis set when the condition described by DRi, LENi,
and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected, the
processor will invoke the Exception 1 handler. The

No oA wN

Am386DXL Microprocessor 1-231

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

exception is handled as a fault if an instruction execution
breakpoint occurred or as a trap if a data breakpoint
occurred.

Important Note: A flag, Bi, is set whenever the hard-
ware detects a match condition on enabled breakpoint i.
Whenever a match is detected on at least one enabled
breakpoint i, the hardware immediately sets all Bi bits
corresponding to breakpoint conditions matching at that
instant, whether enabled or not. Therefore, the Excep-
tion 1 handler may see that muttiple Bi bits are set, but
only set Bi bits corresponding to enabled breakpoints (Li
or Gi set) are true indications of why the Exception 1
handler was invoked.

BD (Debug Fault Due to Attempted Register Access
When GD Bit Set)

This bit is set if the Exception 1 handler was invoked due
to an instruction attempting to read or write to the debug
registers when GD bit was set. If such an event occurs,
then the GD bit is automatically cleared when the Ex-
ception 1 handler is invoked, allowing handler access to
the debug registers.

BS (Debug Trap Due to Single-Step)

This bitis set if the Exception 1 handler was invoked due
tothe TF bit in the flag register being set (for single-step-
ping). See Section Single-Step Trap.

BT (Debug Trap Due to Task Switch)

This bitis set if the Exception 1 handler was invoked due
to a task switch occurring to a task having a Am386DXL
microprocessor TSS with the T-bit set. (See Figure 29.)

Note the task switch into the new task occurs normaily,
but before the first instruction of the task is executed, the
Exception 1 handler is invoked. With respect to the task
switch operation, the operation is considered to be a
trap.

Use of Resume Flag (RF) In Flag Register

The Resume Flag (RF) inthe flag word can suppress an
instruction execution breakpoint when the Exception 1
handier returns to a user program at a user address that
is also an instruction execution breakpoint. See Section
Flags Register.

REAL MODE ARCHITECTURE

Real Mode Introduction

When the processor is reset or powered up, it is initial-
ized in Real Mode. Real Mode has the same base archi-
tecture as the 8086, but allows access to the 32-bit reg-
ister set of the Am386DXL microprocessor. The ad-
dressing mechanism, memory size, and interrupt han-
dling are all identical to the Real Mode on the 80286.

All of the Am386DXL microprocessor instructions are
available in Real Mode (except those instructions listed
in Protection and I/O Permission Bitmap). The default
operand size in Real Mode is 16 bits, just like the 8086.
In order to use the 32-bit registers and addressing
modes, override prefixes must be used. In addition, the
segment size on the Am386DXL CPU in Real Mode is
64 Kb so 32-bit effective addresses must have a value
less the 0000FFFFH. The primary purpose of Real
Mode is to set up the processor for Protected Mode
Operation.

15 0
Offset Max Limit
Fixed At 64K In
19 0 Real Mode
Segment
Selector 0000
Memory Operand T
Selected
64K Segment
Segment Base
15021B-017

Figure 14. Real Address Mode Addressing

1-232 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD :'

LOCK Operation

The LOCK prefix on the Am386DXL microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Am386DXL CPU in Protected Mode and Virtual 8086
Mode. Paging makes it impossible to guarantee that
repeated string instructions can be LOCKed. The
Am386DXL CPU can not require that all pages holding
the string be physically present in memory. Hence, a
Page Fault (Exception 14) might have to be taken during
the repeated string instruction. Therefore the LOCK
prefix can not be supported during repeated string
instructions.

These are the only instruction forms where the LOCK
prefix is legal on the Am386DXL microprocessor.

Operands
Op-code (Dest, Source)
BIT TEST and Mem, Reg/immed
SET/RESET/COMPLEMENT
XCHG Reg, Mem
XCHG Mem, Reg

ADD, OR, ADC, SBB,
AND, SUB, XOR

Mem, Reg/immed

NOT, NEG, INC, DEC Mem

An Exception 6 will be generated if a LOCK prefix is
placed before any instruction form or op-code not listed
above. The LOCK prefix allows indivisible read/modify/
write operations on memory operands using the instruc-
tions above. For example, even the ADD Reg, Mem is
not LOCKable, because the Mem operand is not the
destination (and therefore no memory read/modify/op-
eration is being performed).

Since, on the Am386DXL microprocessor, repeated
string instructions are not LOCKable, it is not possible to
LOCK the bus for a long period of time. Therefore, the
LOCK prefix is not IOPL-sensitive on the Am386DXL
device. The LOCK prefix can be used at any privilege
level, but only on the instruction forms listed above.

Memory Addressing

In Real Mode, the maximum memory size is limited to
1 Mb. Thus, only address lines A19-A2 are active.

Exception, the High address lines A31-A20 are
High during CS-relative memory cycles until an inter-
segment jump or call is executed (see Section Reset
and Initialization).

Since paging is not allowed in Real Mode, the linear ad-
dresses are the same as physical addresses. Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register that is
shifted left by 4 bits to an effective address. This addition
results in a physical address from 00000000H to
0010FFEFH. This is compatible with 80286 Real Mode.
Since segment registers are shifted left by 4 bits, this im-
plies that Real Mode segments always start on 16-byte
boundaries.

All segments in Real Mode are exactly 64-Kb long and
may be read, written, or executed. The Am386DXL mi-
croprocessor will generate an Exception 13 if a data
operand or instruction fetch occurs past the end of a
segment (i.e., if an operand has an offset greater than
FFFFH; for example, a word with a low byte at FFFFH
and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if a
particular segment does not use all 64 Kb another seg-
ment can be overlayed on top of the unused portion of
the previous segment. This allows the programmer to
minimize the amount of physical memory needed for a
program.

Reserved Locations

There aretwo fixed areas in memory that are reservedin
Real address mode: system initialization area and the
interrupt table area. Locations 00000H through 003FFH
are reserved for interrupt vectors. Each one of the 256
possible interrupts has a 4-byte jump vector reserved
for it. Locations FFFFFFFOH through FFFFFFFFH are
reserved for system initialization.

Interrupts

Many of the exceptions shown in Table 5 and discussed
in Section Interrupts are not applicable to Real Mode op-
eration; in particular, Exceptions 10, 11, and 14 will not
happen in Real Mode. Other exceptions have slightly
different meanings in Real Mode. Table 8 identifies
these exceptions.

Table 8. Other Exceptions in Real Mode

Interrupt Related Return
Function Number Instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit. Instruction
CS, DS, ES, FS, GS 13 Word memory reference
Segment overrun exception beyond offset = FFFFH. Before
An attempt to execute Instruction
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
beyond offset= FFFFH. Instruction

Am386DXL Microprocessor

1-233

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, FLT, INTR with interrupts enabled
(IF = 1), or RESET will force the Am386DXL. micropro-
cessor out of hatt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

Shutdown will occur when a severe error is detected that
prevents further processing. In Real Mode, shutdown
can occur under two conditions:

B An interrupt or an exception occur (Exception 8 or
13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e., there is not an
interrupt handler for the interrupt);

® A CALL, INT, or PUSH instruction attempts to wrap
aroundthe stack segment when SPis noteven (e.g.,
pushing a value on the stack when SP = 0001
resulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shutdown if
the Interrupt Descriptor Table limit is large enough to
contain the NMI interrupt vector (at least 0017H) and the
stack has enough room to contain the vector and flag in-
formation (i.e., SP is greater than 0005H). Otherwise
shutdown can only be exited via the RESET input.

PROTECTED MODE ARCHITECTURE
Introduction

The complete capabilities of the Am386DXL micropro-
cessor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to 4 Gb (2% bytes) and allows the running of vir-
tual memory programs of aimost unlimited size (64 tb or
2'¢ bytes). In addition, Protected Mode allows the
Am386DXL CPU to run all of the existing 8086 and
80286 software, while providing a sophisticated mem-
ory management and a hardware-assisted protection
mechanism. Protected Mode allows the use of addi-
tional instructions especially optimized for supporting
multitasking operating systems. The base architecture
of the Am386DXL CPU remains the same; the registers,

instructions, and addressing modes described in the
previous sections are retained. The main differences
between Protected Mode and Real Mode from a pro-
grammer’s view is the increased address space and a
different addressing mechanism.

Addressing Mechanism

Like Real Mode, Protected Mode uses two components
to form the logical address: a 16-bit selector is used to
determine the linear base address of a segment; the
base address is added to a 32-bit effective address to
form a 32-bit linear address. The linear address is then
either used as the 32-bit physical address or if paging is
enabled the paging mechanism maps the 32-bit linear
address into a 32-bit physical address.

The difference between the two modes lies in calculat-
ing the base address. In Protected Mode, the selectoris
used to specify an index into an operating system de-
fined table (see Figure 15). The table contains the 32-bit
base address of a given segment. The physical address
is formed by adding the base address obtained from the
table to the offset.

Paging provides an additional memory management
mechanism that operates only in Protected Mode. Pag-
ing provides a means of managing the very large seg-
ments of the Am386DXL microprocessor. As such,
paging operates beneath segmentation. The paging
mechanism translates the protected linear address that
comes from the segmentation unit into a physical ad-
dress. Figure 16 shows the compiete Am386DXL de-
vice addressing mechanism with paging enabled.

Segmentation
Segmentation Introduction

Segmentation is one method of memory management.
Segmentation provides the basis for protection. Seg-
ments are used to encapsulate regions of memory that
have common attributes. For example, all of the code of
a given program could be contained in a segment or an
operating system table may reside in a segment. All in-
formation about a segment is stored in an 8-byte data
structure called a descriptor. All of the descriptors in a
system are contained in tables recognized by hardware.

1-234

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

48/32 Bit Pointer

Segment Limit

Selector Offset /
47/31 31/15
Memory Operand
Selected
Up To Segment
4G
Access Rights
Limit
L—p{ Base Address
Segment
Descriptor Segmz:l;gase
150218-018
Figure 15. Protected Mode Addressing
48 Bit Pointer
Segment Offset Physical Address
15 0 31 I4 Kb
Id Kb
Paging 4Kb
Access Rights Mechanism Physical
— Address .
Limit Memory Operand ggés;::cal
Base Address ;:?:e AKb
Segment Linear Address
Descriptor Address AKb
I4 Kb
I4 Kb
15021B-019
Figure 16. Paging and Segmentation
Am386DXL Microprocessor 1-235

This Materia

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

Terminology

The following terms are used throughout the discussion
of descriptors, privilege levels, and protection:

PL.: Privilege Level—One of the four hierarchical privi-
lege levels. Level 0 is the most privileged level and level
3 is the least privileged. More privileged leveis are nu-
merically smaller than less privileged levels.

RPL: Requester Privilege Level—The privilege level of
the original supplier of the selector. RPL is determined
by the least two significant bits of a selector.

DPL.: Descriptor Privilege Level—This is the least privi-
leged level at which a task may access that descriptor
(and the segment associated with that descriptor). De-
scriptor Privilege Level is determined by bits 6-5 in the
Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed. CPL
can also be determined by examining the lowest 2 bits of
the CS register, except for conforming code segments.

EPL: Effective Privilege Level—The effective privilege
level is the least privileged of the RPL and DPL.. Since
small privilege level values indicate greater privilege,
EPL is the numerical maximum of RPL and DPL.
Task: One instance of the execution of a program.
Tasks are also referred to as processes.

Descriptor Tables
Descriptor Tables Introduction

The descriptor tables define all of the segments which
are used in an Am386DXL microprocessor system.

There are three types of tables on the Am386DXL mi-
croprocessor that hold descriptors: the Global Descrip-
tor Table, Local Descriptor Table, and the Interrupt De-
scriptor Table. All of the tables are variable iength mem-
ory arrays. They can range in size between 8 bytes and
64 Kb. Each table can hold up to 8192 eight byte de-
scriptors. The upper 13 bits of a selector are used as an
index into the descriptor table. The tables have registers
associated with them that hold the 32-bit linear base ad-
dress, and the 16-bit limit of each table.

Each of the tables has a register associated with it: the
GDTR, LDTR, andthe IDTR (see Figure 17). The LGDT,
LLDT, and LIDT instructions load the base and limit of
the Global, Local, and Interrupt Descriptor Tables, re-
spectively, into the appropriate register. The SGDT,
SLDT, and SIDT instructions store the base and limit
values. These tables are maniputated by the operating
system. Therefore, the load descriptor table instructions
are privileged instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains descriptors
that are possibly available to all of the tasks in a system.
The GDT can contain any type of segment descriptor
except for descriptors that are used for servicing inter-
rupts (i.e., interrupt and trap descriptors). Every
Am386DXL microprocessor contains a GDT. Generally,
the GDT contains code and data segments used by the
operating systems and task state segments and de-
scriptors for the LDTs in a system.

Thefirst slot of the Global Descriptor Table corresponds
to the null selector and is not used. The null selector de-
fines a null pointer value.

15 o !
LDTR LDT DESCR ‘
Selector ,
]
15 o !
IDT Limit -
)
IDTR IDT Base :
Linear Address '
31 0 *
15 0
GDT Limit
GDTR GDT Base
Linear Address
31 (o}

Program Invisible
Automatically Loaded
From LDT Descriptor

15 o
LDT Limit X

]

LDT Base)
Linear Address '

L

31 (¢} '
1

]

]

15021B-020

Figure 17. Descriptor Table Registers

1-236

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

amp &1

Local Descriptor Table

LDTs contain descriptors that are associated with a
given task. Generally, operating systems are designed
so that each task has a separate LDT. The LDT may
contain only code, data, stack, task gate, and call gate
descriptors. LDTs provide a mechanism for isolating a
giventask’s code and data segments fromthe rest of the
operating system, while the GDT contains descriptors
for segments that are common to all tasks. A segment
cannot be accessed by a task if its segment descriptor
does not exist in either the current LDT orthe GDT. This
provides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers that contain a
base address and limit, the visible portion of the LDT
register contains only a 16-bit selector. This selector re-
fers to a Local Descriptor Table descriptor in the GDT.

Interrupt Descriptor Table

The third table needed for Am386DXL microprocessor
systems is the Interrupt Descriptor Table (see Figure
18). The IDT contains the descriptors that point to the lo-
cation of up to 256 interrupt service routines. The IDT
may contain only task gates, interrupt gates, and trap
gates. The IDT should be at least 256 bytes in size in
order to hold the descriptors for the 32, Reserved for

Future Use, interrupts. Every interrupt used by a system
must have an entry inthe IDT. The IDT entries are refer-
enced via INT instructions, external interrupt vectors,
and exceptions. (See Interrupts.)

Descriptors
Descriptor Attribute Bits

The object to which the segment selector pointsis called
a descriptor. Descriptors are 8-byte quantities that con-
tain attributes about a given region of linear address
space (i.e., a segment). These attributes include the
32-bit base linear address of the segment, the 20-bit
length and granularity of the segment, the protection
level, read, write or execute privileges, the default size
of the operands (16 bit or 32 bit), and the type of seg-
ment. All of the attribute information about a segment is
contained in 12 bits in the segment descriptor. Figure 19
shows the general format of a descriptor. All segments
on the Am386DXL microprocessor have three attribute
fields in common: the P bit, the DPL bit, and the S bit.
The Present P bitis 1 if the segment is loaded in physical
memory; if P=0 then any attempt to access this seg-
ment causes a not present exception (Exception 11).
The Descriptor Privilege Level DPL is a 2-bit field that
specifies the protection levels 0-3 associated with a
segment.

== Memory ==
"
Gate For }
Interrupt #n
Gate For
Interrupt #n—1
Interrupt
—p < > Descriptor
. Table
. (IDT)
.
CPU
Gate For
Interrupt #1
15 0
- Gate For
IDT Limit Interrupt #0 Increasing
\,) Memory
IDT Base Addresses
31 0 = =
15021B-021
Figure 18. Interrupt Descriptor Table Register Use
Am386DXL Microprocessor 1-237

This Material Copyrighted By Its Respective Manufacturer

This Materia

:' AMD

Byte
31 0 Address
Segment Base 15-0 Segment Limit 15-0 (o]
. DPL Type
- Limit Base
Base 31-24 G|D|O|AVL 1906 P S I I A 2316 +4
Base Base Address of the segment
Limit The length of the segment
P Present Bit: 1=Present, 0= Not Present
DPL Descriptor Privilege Levels 0-3
S Segmaent Descriptor: 0 = System Descriptor, 1 = Code or Data Segment Descriptor
Type Type of Segment
A Accessed Bit
G Granularity Bit: 1 = Segment length is page granular, 0 = Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only): 1 =32-bit segment, 0= 16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS
Note: In a maximum-size segment (i.e., segment with G =1 and segment limit 19-0 = FFFFFH), the lowest 12 bits of
the segment base should be zero (i.e., segment base 11-000 =000H).
15021B-022

Figure 19. General Format of Segment Descriptors

The Am386DXL microprocessor has two main catego-
ries of segments: system segments and non-system
segments (for code and data). The segment S bit in the
segment descriptor determines if a given segment is a
system segment or a code or data segment. If the S bit is
1,thenthe segment is either a code or data segment; if it
is 0, then the segment is a system segment.

Am386DXL Microprocessor Code and Data
Descriptors (S = 1)

Figure 20 shows the general format of a code and data
descriptor and Table 9 illustrates how the bits in the Ac-
cess Rights Byte are interpreted.

Code and data segments have several descriptor fields
in common. The accessed A bit is set whenever the
processor accesses a descriptor. The A bit is used
by operating systems to keep usage statistics on a
given segment. The G bit, or granularity bit, specifies if
a segment length is byte-granular or page-granular.
Am386DXL microprocessor segments can be 1 Mb
long with byte granularity (G=0) or 4 Gb with page
granularity (G =1), (i.e., 2° pages—each page is 4 Kb
in length). The granularity is totally unrelated to paging.
An Am386DXL CPU system can consist of segments

with byte granularity and page granularity, whether or
not paging is enabled.

The executable E bit tells if a segment is a code or data
segment. A code segment (E=1, S=1) may be exe-
cute-only or execute/read as determined by the Read
R bit. Code segments are execute only if R=0 and exe-
cute/read if R =1. Code segments may never be written
into.

Note: Code segments may be modified via aliases.
Aliases are writeable data segments that occupy
the same range of linear address space as the code
segment.

The D bit indicates the default length for operands and
effective addresses. if D = 1, then 32-bit operands and
32-bit addressing modes are assumed. If D = 0, then
16-bit operands and 16-bit addressing modes are as-
sumed. Therefore all existing 80286 code segments will
execute on the Am386DXL microprocessor assuming
the D bit is set 0.

Another attribute of code segments is determined by the
conforming C bit. Conforming segments, C = 1, can be
executed and shared by programs at different privilege
levels (see Section Protection).

1-238

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD :‘

Table 9. Access Rights Byte Definition for Code
and Data Descriptions

Bit
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists, base and limit are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Levels (DPL)
4 Segment Descriptor (S) S=1 Code or Data (includes stacks) segment descriptor.
S=0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E=0 Descriptor type is data segment. if Data
2 Expansion Direction (ED) ED=0 Expand up segment, offsets must be < limit. Segment
ED=1 Expand down segment, offsets must be > limit. (S=1,
1 Writeable (W) W=0 Data segment may not be written into. E=0)
W=1 Data segment may be written into.
3 Executable (E) E=1 Descriptor type is code segment. if Code
2 Conforming (C) C=1 Code segment may only be executed when Segment
CPL2DPL and CPL remains unchanged. (S=1,
1 Readable (R) R=0 Code segment may not be read. E=1)
R=1 Code segment may be read.
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.
31 0
Segment Base 15-0 Segment Limit 15-0 o]
imi Access Rights Base
Base 31-24 G| bB jo|AvL 1@"& Byte o316 | +4
D/B 1 = Default Instructions Attributes are 32 bits
0 = Default Instructions Attributes are 16 bits
AVL Available tfield for user or OS
G Granularity Bit: 1 =Segment length is page granular, 0= Segment length is byte granular
1] Bit must be zero (0) for compatibility with future processors

Note: In a maximum-size segment (i.e., a segment with G = 1 and segment limit 19-0 = FFFFFH), the lowest 12 bits of
the segment base should be zero (i.e., segment base 11-000 =000H).

15021B-023
Figure 20. Code and Data Segment Descriptors

This Materi al

Segments identified as data segments (E=0, S=1) are
used for two types of Am386DXL microprocessor
segments: stack and data segments. The expansion
direction (ED) bit specifies if a segment expands down-
ward (stack) or upward (data). if a segment is a stack
segment, all offsets must be greater than the segment
limit. On a data segment all offsets must be less than or
equalto the limit. In other words, stack segments start at
the base linear address plus the maximum segment limit
and grow down to the base linear address plus the limit.
On the other hand, data segments start at the base
linear address and expand to the base linear address
plus limit.

The write (W) bit controls the ability to write into a seg-
ment. Data segments are read-only if W=0. The stack
segment must have W=1.

The B bit controls the size of the stack pointer register. If
B =1, then PUSHes, POPs, and CALLs all use the 32-bit
ESP register for stack references and assume an upper
limit of FFFFFFFFH. If B =0, stack instructions all use
the 16-bit SP register and assume an upper limit of
FFFFH.

System Descriptor Formats

System segments describe information about operating
system tables, tasks, and gates. Figure 21 shows the

Am386DXL Microprocessor

1-239

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

general format of system segment descriptors, and the
various types of system segments. The Am386DXL mi-
croprocessor system descriptors contain a 32-bit base
linear address and a 20-bit segment limit. 80286 system
descriptors have a 24-bitbase address and a 16-bit seg-
ment limit. 80286 system descriptors are identified by
the upper 16 bits being all zeros.

LDT Descriptors (S=0, Type=2)

LDT descriptors (S=0, TYPE =2) contain information
about Local Descriptor Tables. LDTs contain a table of
segment descriptors, unique to a particuiar task. Since
the instruction to load the LDTR is only available at privi-
lege level 0, the DPL field is ignored. LDT descriptors
are only aliowed in the Global Descriptor Table (GDT).
TSS Descriptors (S=0, Type=1,3,9, B)

A Task State Segment (TSS) descriptor contains infor-
mation about the location, size, and privilege level of a
TSS. ATSSinturnis a specialfixed format segment that
contains all the state information for atask and a linkage
field to permit nesting tasks. The Type field is used to in-
dicate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The Type
field also indicates if the segment contains a 80286 or a
Am386DXL microprocessor TSS. The Task Register
(TR) contains the selector that points to the current TSS.

Gate Descriptors (S =0, Type = 4-7,C, F)

Gates are used to control access to entry points within
the target code segment. The various types of gate de-
scriptors are call gates, task gates, interrupt gates, and
trap gates. Gates provide a level of indirection between
the source and destination of the control transfer. This
indirection allows the processor to automatically per-
form protection checks. It also allows system designers
to control entry points to the operating system. Call
gates are used to change privilege levels (see Section
Protection), task gates are used to perform a task

switch, and interrupt and trap gates are used to specify
interrupt service routines.

Figure 22 shows the format of the four types of gate de-
scriptors. Call gates are primarily used to transfer pro-
gram control to a more privileged level. The cail gate de-
scriptor consists of three fields: the access byte; a long
pointer (selector and offset) that points to the start of a
routine; and a word count that specifies how many pa-
rameters are to be copied from the caller’s stack to the
stack of the called routine. The word count field is only
used by call gates when there is a change in the privi-
lege level, other types of gates ignore the word count
fieid.

Interrupt and trap gates use the destination selector and
destination offset fields of the gate descriptor as a point-
er to the start of the interrupt or trap handler routines.
The difference between interrupt gates and trap gates is
that the interrupt gate disables interrupts (resets the IF
bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates may
only refer to a task state segment (see Section Task
Switching); therefore, only the destination selector por-
tion of atask gate descriptor is used, and the destination
offset is ignhored.

Exception 13 is generated when a destination selector
does not refer to a correct descriptor type, i.e., a code
segment for an interrupt, trap or call gate, a TSS for a
task gate.

The access byte format is the same for all gate descrip-
tors. P=1 indicates that the gate contents are valid.
P = 0indicates the contents are not valid and causes Ex-
ception 11 if referenced. DPL is the descriptor privilege
level and specifies when this descriptor may be used by
a task (see Section Protection). The S field, bit 4 of the
access rights byte, must be 0 to indicate a system con-
trol descriptor. The type field specifies the descriptor
type as indicated in Figure 22.

31 16 0
Segment Base 15-0 Segment Limit 15-0 0
P DPL T
_ Limit ype Base
Base 3124 Gjojo|o 19-16 P I 0 I I l 2316 +4
Type Defines Type Defines

0 Invalid 8 Invatid
1 Available 80286 TSS 9 Available Am386DXL CPU TSS
2 LDT A Undefined (Reserved)
3 Busy 80286 TSS B Busy Am386DXL CPU TSS
4 80286 Call Gate C Am386DXL CPU Calt Gate
5 Task Gate (for 80286 or Am386DXL CPU Task) D Undefined (Reserved)
6 80286 Interrupt Gate E Am386DXL CPU Interrupt Gate
7 80286 Trap Gate F Am386DXL CPU Trap Gate

Note: In a maximum-size segment (i.e., segment with G = 1 and segment limit 19-0 = FFFFFH), the lowest 12 bits
of the segment base should be zero (i.e., segment base 11-000 = 000H).

150218024

Figure 21. System Segments Descriptors

1-240

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

avp &4

31 24 16 15 8 5)
Selector Offset 15-0 s}

DPL T Word
Offset 31-16 P ol ", lolo|o| Count | .4

[1] 4-0

Gate Descriptors Flelds

Name Value
Type 4
5
6
7
C
E
F
P 0
1

Description

80286 Call Gate

Task Gate (for 80286 or Am386DXL CPU Task)
80286 interrupt Gate

80286 Trap Gate

Am386DXL CPU Call Gate

Am386DXL CPU Interrupt Gate

Am386DXL CPU Trap Gate

Descriptor contents are not valid

Descriptor contents are valid

DPL—Least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy
from caller's stack to the called procedure’s stack. The parameters are 32-bit quantities for Am386DXL CPU gates, and

16-bit quantities for 80286 gates.

DESTINATION 16-Bit
SELECTOR Selector
DESTINATION Offset
OFFSET 16-bit 80286

32-bit Am386DXL CPU

Selector to the target code segment
or
Selector to the target state segment for task gate

Entry point within the target code segment

15021B-025

Figure 22. Gate Descriptor Formats

Difference Between Am386DXL Microprocessor
and 80286 Descriptors

In order to provide operating system compatibility be-
tween the 80286 and Am386DXL microprocessor, the
Am386DXL CPU supports all of the 80286 segment de-
scriptors. Figure 23 shows the general format of an
80286 system segment descriptor. The only differences
between 80286 and Am386DXL device descriptor for-
mats are that the values of the type fields and the limit
and base address fields have been expanded for the
AmM386DXL device. The 80286 system segment de-
scriptors contained a 24-bit base address and 16-bit
limit, while the Am386DXL microprocessor system seg-
ment descriptors have a 32-bit base address, a 20-bit
limit field, and a granularity bit.

By supporting 80286 system segments, the Am386DXL
microprocessor is able to execute 80286 application
programs on a Am386DXL CPU operating system. This
is possible because the processor automatically under-
stands which descriptors are 80286-style descriptors
and which are Am386DXL microprocessor-style de-
scriptors. in particular, if the upper word of a descriptor
is zero, then that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Am386DXL microprocessor descriptors is
the interpretation of the word count field of call gates and
the B bit. The word count field specifies the number of
16-bit quantities to copy for 80286 call gates and 32-bit
quantities for Am386DXL device call gates. The B bit
controls the size of PUSHes when using a call gate; if
B =0, PUSHes are 16 bits, if B= 1, PUSHes are 32 bits.

Selector Fields

A selector in Protected Mode has three fields: Local or
Global Descriptor Table Indicator (T!), Descriptor Entry
Index (Index), and Requestor (the selector's) Privilege
Level (RPL) as shown in Figure 24. The Tl bits select
one of two memory-based tables of descriptors (the
Global Descriptor Table or the Local Descriptor Table).
The Index selects one of 8K descriptors in the appropri-
ate descriptor table. The RPL bits allow high speed test-
ing of the selector’s privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register
has a segment descriptor cache register associated
with it. Whenever a segment register's contents are

Am386DXL Microprocessor

1-241

Copyrighted By Its Respective Mnufacturer

n AMD

changed, the 8-byte descriptor associated with that not visible to the programmer. Since descriptor caches
selector is automatically loaded (cached) on the chip. only change when a segment register is changed,
Once loaded, all references to that segment use the programs that modify the descriptor tables must reload
cached descriptor information instead of reaccessing the appropriate segment registers after changing a
the descriptor. The contents of the descriptor cache are descriptor’s vaiue.

31 0
Selector Base 15-0 Segment Limit 15-0 0
Reserved for Future Use DPL Type
P S Base
Setto 0 | [] | 236 | +4
Base Base Address of the Segment
Limit The length of the Segment
P Present Bit: 1 = Present, 0= Not Present
DPL Descriptor Privilege Levels 0-3
S System Descriptor: 0 = System, 1 = User
Type Type of Segment
15021B-026
Figure 23. 80286 Code and Data Segment Descriptors
Selector
15 4321 0
Ssg[nent TH RPL
Register 0 O~----- 0 11111 I
~ ~- ~ | Table
Index Indicator
Ti=1 Ti=0
N Descriptor
Number /l
6 6
5 5
4

3 Descriptor 3

2 2

1 1

0 [¢] Null

Local Descriptor Table Global Descriptor Table
15021B-027

Figure 24. Example Descriptor Selection

1-242 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD u

Segment Descriptor Register Settings indicate the segment is present and fully usable. In Real
The contents of the segment descriptor cache vary de- Address Mode, the internal privilege level is always
pending on the mode the Am386DXL microprocessor is fixed to the highest level, level 0, so I/O and other privi-
operating in. When operating in Real Address Mode, the ~ 'eged op-codes may be executed.

segment base, limit, and other attributes within When operating in Protected Mode, the segment base,
the segment cache registers are defined as shown in limit, and other attributes within the segment cache reg-
Figure 25. isters are defined as shown in Figure 26. In Protected
For compatibility with the 8086 architecture, the baseis ~ Mode, each of these fields are defined according to the
set to 16 times the current selector value, the limitis contents of the segment descriptor indexed by the se-
fixed at 0000FFFFH, and the attributes are fixedsoasto lector value loaded into the segment register.

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector 32-Bit Limit Other Attributes
Load into Segment Register) (Fixed) (Fixed)

Conforming Privilege
Stack Size
Executable
Writeable
Readable
Expansion Direction
Granularity
Accessed
Privilege Level |
Present l

BASE LIMIT l v v wL v v
CS | 16X Current CS Selector” 0000FFFFH YOl Y B uty|lYlY|] -]N
SS | 16X Current SS Selector 0000FFFFH Y|lo|l Y|l Bl U|Y{ Y| N[W] -
DS | 16X Current DS Selector 0000FFFFH Yy|lo|l Y] B} Ui Y| Y} Nl -]-
ES | 16X Current ES Selector 0000FFFFH Yyiof Y| B|lU}jY] Y| N|] -] -
FS | 16X Current FS Selector 0000FFFFH Y|lo|l Y}{ Bl U|]Y}{ Y| N{ -] -
GS | 16X Current GS Selector 0000FFFFH Ylo|l Y| BfUlY| Y] N| -]~

Key: Y = Yes D = Expand down
N = No B = Byte granularity
0 = Privilege level 0 P = Page granularity
1 = Privilege level 1 W = Push/pop 16-bit words
2 = Privilege level 2 F = Push/pop 32-bit Dwords
3 = Privilege level 3 — = Does not apply to that segment cache register
U = Expand up

*Except the 32-bit CS base is initialized to FFFFFOO0H after reset until first intersegment control transfer (e.g., intersegment CALL, or
intersegment JMP, or INT). (See Figure 27 Example.)

150218-028
Figure 25. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)
Am386DXL Microprocessor 1-243

This Material Copyrighted By Its Respective Manufacturer

n AMD

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector
Load into Segment Register)

32-Bit Limit
(Updated During Selector
Load Into Segment Register)

Other Attributes
(Updated During Selector
Load Into Segment Register)

Conforming Privilege

Stack Size

Executable

Writeable

Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Present l

BASE) LIMIT l v v v v v
CS | Base per Seg Descr Limit per Seg Descr pld]l d d d d N|l Y] -] d
SS | Base per Seg Descr Limit per Seg Descr pld} d d d r w| N d| -
DS | Base per Seg Descr Limit per Seg Descr pjd| d d| did]|d} N| -| -
ES | Base per Seg Descr Limit per Seg Descr pld]| d d d d| d N| - | -
FS | Base per Seg Descr Limit per Seg Descr p|l d| d d|l d|d]d| N|] -| -
GS | Base per Seg Descr Limit per Seg Descr p|ldl d d d d}| d N} - | -

= Fixed Yes
= Fixed No

= Per segment descriptor; descriptor must indicate “present” to avoid Exception 11 (Exception 12 in case of SS)
= Per segment descriptor, but descriptor must indicate “readable” to avoid Exception 13 (special case for SS)
= Per segment descriptor, but descriptor must indicate "writeable” to avoid Exception 13 (special case for SS)

Y
N
d = Per segment descriptor
p
r
w

= Does not apply to that segment cache register

15021B-029

Figure 26. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the Pro-
tected Mode, the segment base, limit, and other attrib-
utes within the segment cache registers are defined
as shown in Figure 27. For compatibility with the 8086
architecture, the base is set to 16 times the current
selector value, the limit is fixed at 0000FFFFH, and the

attributes are fixed so as to indicate the segment
is present and fully usable. The virtual program exe-
cutes at lowest privilege level, level 3, to allow trapping
of all IOPL-sensitive instructions and level 0 only
instructions.

1-244

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

Segment Descriptor Cache Register Contents

32-Bit Base
{Updated During Selector

Load into Segment Register)

32-Bit Limit
(Fixed)

Other Attributes
(Fixed)

Conforming Privilege
Stack Size

Executable

Wiriteable
Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Key:

Present l
BASE LIMIT l v v VL L v

CS | 16X Current CS Selector 0000FFFFH Yy|3{l Y| BlU}LY]Y]Y N
SS | 16X Current SS Selector 0000FFFFH vy{islyvy|B|l|U|]Y!Y|N -
DS | 16X Current DS Selector 0000FFFFH Y| 3|, Y| BjJUJY]|]Y]N -
ES | 16X Current ES Selector 0000FFFFH Yy|3|] vy{BlU|]Y]Y]|N -
FS | 16X Current FS Selector 0000FFFFH Y| 3/ Y| BJU}yY|]Y!N -
GS | 16X Current GS Selector 0000FFFFH Yy{3{ Y| B|U|]Y]Y|N -
= Yes D = Expand down

= No B = Byte granularity

= Privilege level 0 P = Page granularity

= Privilege level 1 W = Push/pop 16-bit words

= Privilege level 2 F = Push/pop 32-bit Dwords

= Privilege level 3 — = Does not apply to that segment cache register

= Expand up

15021B-030

Figure 27. Segment Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-245

This Materi al

n AMD

Protection

Protection Concepts

The Am386DXL microprocessor has four levels of pro-
tection that are optimized to support the needs of a
multitasking operating system to isolate and protect
user programs from each other and the operating sys-
tem. The privilege levels control the use of privileged in-
structions, I/O instructions, and access to segments and
segment descriptors. Unlike traditional microprocessor
based systems where this protection is achieved only
through the use of complex external hardware and soft-
ware, the Am386DXL CPU provides the protection on a
page basis when paging is enabled (see Section Page
Level Protection).

The four-level hierarchical privilege system is illustrated
in Figure 28. It is an extension of the user/supervisor
privilege mode commonly used by minicomputers and,
in fact, the user/supervisor mode is fully supported by
the Am386DXL microprocessor paging mechanism.
The privilege levels (PL) are numbered 0 through 3.
Level 0 is the most privileged or trusted level.

CPU
Enforced
Software
Interfaces

Applications

OS Extensions

Kernel
PL=0
Most
Privileged

High Speed
Operating
System
Interface

150218-031

Figure 28. Four-Level Hierarchical Protection

Rules of Privilege

The Am386DXL microprocessor controls access to both
data and procedures between levels of a task, accord-
ing to the following rules.

B Data stored in asegment with privilege level pcanbe
accessed only by code executing at a privilege level
at least as privileged as p.

B A code segment/procedure with privilege level pcan
only be called by a task executing at the same or a
lesser privilege level than p.

Privilege Levels
Task Privilege

At any point in time, a task on the Am386DXL micropro-
cessor always executes at one of the four privilege lev-
els. The Current Privilege Level (CPL) specifies the
task’s privilege level. Atask’s CPL may only be changed
by control transfers through gate descriptors to a code
segment with a different privilege level (see Section
Privilege Level Transfers). Thus, an application pro-
gram running at PL =3 may call an operating system
routine at PL = 1 (via a gate) that would cause the task’s
CPL to be set to 1 until operating system routine is
finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL
tield. The RPL is the two least significant bits of the se-
lector. The selector's RPL is only used to establish a
less trusted privilege level than the current privilege
level for the use of a segment. This level is called the
task’s effective privilege level (EPL). The EPL is defined
as being the least privileged (i.e., numerically larger)
level of a task’s CPL and a selector's RPL. Thus, if se-
lector’'s RPL =0, then the CPL aiways specifies the privi-
lege level for making an access using the selector. On
the other hand if RPL = 3, then a selector can only ac-
cess segments at ievel 3 regardless of the task’'s CPL.
The RPL is most commonly used to verify that pointers
passed to an operating system procedure do not access
data that is of higher privilege than the procedure that
originated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL) in-
struction is provided to force the RPL bits to the
originator’s CPL.

1/O Privilege and I/O Permission Bitmap

The I/O privilege level (IOPL, a 2-bit field inthe EFLAGS
register) defines the least privileged level at which
I/0O instructions can be unconditionally performed. /O
instructions can be unconditionally performed when
CPL< IOPL. (The /O instructions are IN, OUT, INS,
OUTS, REP INS, and REP OUTS.) When CPL > IOPL,
and the current task is associated with a 286 TSS, at-
tempted /O instructions cause an Exception 13 fault.
When CPL > IOPL, and the current task is associated
with a Am386DXL CPU TSS, the 1/0 Permission Bitmap
(part of a Am386D XL microprocessor TSS) is consulted
on whether I/O to the port is allowed, or an Exception 13
fault is to be generated instead. For diagrams of the /O
Permission Bitmap, refer to Figures 29a and 29b. For
further information on how the I/O Permission Bitmap is
used in Protected Mode or in Virtual 8086 Mode, referto
Section Protection and /O Permission Bitmap.

The /O privilege level (IOPL) also affects whether
several other instructions can be executed or cause an
Exception 13 fault instead. These instructions are called
IOPL-sensitive instructions and they are CLI and STI.
(Note that the LOCK prefix is not IOPL-sensitive on the
Am386DXL microprocessor.)

1-246

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materia

AMD n

The IOPL also affects whether the IF bit (interrupts en-
able flag) can be changed by loading a value into the
EFLAGS register. When CPL <IOPL, the IF bit can be
changed by loading a new value into the EFLAGS regis-
ter. When CPL > 1OPL, the IF bit cannotbe changed by a
new value POP’ed into (or otherwise loaded into) the
EFLAGS register; the IF bit merely remains unchanged
and no exception is generated.

Table 10. Pointer Test Instructions

Instruction Operands Function

ARPL

Selector,
Register

Adjust Requested Privilege
Level; adjusts the RPL of
the selector to the numeric
maximum of current selec-
tor RPL value and the RPL
value in the register. Set
zero flag if selector RPL
was changed.

VERR Selector VERI{fy for Read: sets the
zero flag if the segment
referred to by the selector

can be read.

VERW Selector VERIfy for Write: sets the
zero flag if the segment
referred to by the selector

can be written.

LSL Register,
Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register,
Selector

L.oad Access Rights: reads
the descriptor access
rights byte into the register
it privilege rules allow. Set
zero flag if successful.

Privilege Validation

The Am386DXL CPU provides several instructions to
speed pointer testing and help maintain system integrity
by verifying that the selector value refers to an appropri-
ate segment. Table 10 summarizes the selector valida-
tion procedures available for the Am386DXL micropro-
cessor.

This pointer verification prevents the common problem
of an application at PL = 3 calling an operating-systems
routine at PL = 0 and passing the operating-systems
routine a bad pointer that corrupts a data structure
belonging to the operating system. If the operating-sys-
tems routine uses the ARPL instruction to ensure that
the RPL of the selector has no greater privilege than that
of the caller, then this problem can be avoided.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments, such as control trans-

fers; and those involving data accesses. Determining
the ability of a task to access a segment involves the
type of segment to be accessed, the instruction used,
the type of descriptor used, and CPL, RPL, and DPL as
described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Am386DXL microprocessor
makes protection validation checks. Selectors loadedin
the DS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data access
rules are specified in Section Rules of Privilege. The
only exception to those rules is readable conforming
code segments which can be accessed at any privilege
level.

Finally, the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is more
privileged than the CPL an Exception 13 (Generat Pro-
tection fault) is generated.

The rules regarding the stack segment are slightly differ-
ent than those involving data segments. instructions
that load selectors into SS must refer to data segment
descriptors for writeable data segments. The DPL and
RPL must equal the CPL. Alf other descriptor types ora
privilege level violation will cause Exception 13. A stack
not present fault causes Exception 12. Note that an
Exception 11 is used for a not-present code or data
segment.

Privilege Level Transfers

Intersegment control transfers occur when a selector is
loaded in the CS register. For a typical system most of
these transfers are simply the result of a call or ajump to
another routine. There are five types of control transfers,
which are summarized in Table 11.

Many of these transfers result in a privilege level trans-
fer. Changing privilege levels is done only via control
transfers by using gates, task switches, and interrupt or
trap gates.

Control transfers can only occur if the operation that
loaded the selector references the correct descriptor
type. Any violation of these descriptor usage rules will
cause an Exception 13 (e.g., JMP through a call gate or
IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege ruies require that:

— Privilege level transitions can only occur via gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conforming
code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

Am386DXL Microprocessor

1-247

Copyrighted By Its Respective Mnufacturer

n AMD

Table 11. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT
" Interrupt Instruction, Trap or Interrup

Interrupt within task may change CPL Exception, External Interrupt | Gate IDT
Intersegment to a lower privilege level (change task CPL) RET, IRET* Code Segment GDT/LDT

CALL, JMP Task State Segment GDT

CALL, JMP Task Gate GDT/ADT
Task Switch ;

IRET**, interrupt Instruction,

Exception, External interrupt Task Gate 0T

*NT (Nested Task bit of flag register) =0 **NT (Nested Task bit of flag register) = 1

This Materia

— Conforming Code segments are accessible by
privilege levels that are the same or less privileged
than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL must
be of equal or greater privilege than the gate's DPL.

— The code segment selected in the gate must be the
same or more privileged than the task's CPL.

— Return instructions that do not switch tasks can only
return control to a code segment with same or less
privilege.

— Task switches can be performed by a CALL, JMP, or
INT that references either a task gate or task state
segment whose DPL is less privileged or the same
privilege as the old task's CPL.

Any controi transfer that changes CPL within a task
causes a change of stacks as a result of the privilege
level change. The initial values of SS:ESP for privilege
levels 0, 1, and 2 are retained in the task state segment
(see Section Task Switching). During a JMP or CALL
control transfer, the new stack pointer is loaded in the
S8 and ESP registers and the previous stack pointer is
pushed onto the new stack.

When returning to the original privilege level, use of the
lower-privilege stack is restored as part of the RET or
IRET instruction operation. For subroutine calls that
pass parameters on the stack and cross privilege levels,
afixed number of words (as specified in the gate’s word
count field) are copied from the previous stack to the
current stack. The intersegment RET instruction with a
stack adjustment value will correctly restore the previ-
ous stack pointer upon return.

Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of

privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trusted
procedures (such as those that allocate memory or per-
form 1/O).

Gate descriptors follow the data access rules of privi-
lege; that is, gates can be accessed by a task if the EPL
is equal to or more privileged than the gate descriptor’s
DPL. Gates follow the control transfer rules of privilege
and therefore may only transfer control to a more privi-
leged level.

Call gates are accessed via a CALL instruction and are
syntactically identical to calling a normal subroutine.
When an interlevel Am386DXL microprocessor call
gate is activated, the following actions occur:

1. Load CS:EIP from gate check for validity;
2. SSis pushed zero-extended to 32 bits;

3. ESPis pushed;
4

. Copy word count 32-bit parameters from the old
stack to the new stack;

5. Push return address on stack.

The procedure is identical for 80286 Call gates, except
that 16-bit parameters are copied and 16-bit registers
are pushed.

Interrupt gates and Trap gates work in a similar fashion
as the call gates, except there is no copying of parame-
ters. The only difference between Trap and Interrupt
gates is that control transfers through an Interrupt gate,
disable further interrupts (i.e., the IF bit is set to 0), and
Trap gates leave the interrupt status unchanged.

1-248

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

31 16 15 0 1SS
Base
0000000000000000 | BackLink | o
ESPO 4
0000000000000000 | SSo 8 | packe
ESP1 c cPL
0000000000000000] SS1 w0 | "2
ESP2 14
0000000000000000 | sS2 18
CR3 1C
EiP 20
EFLAGS 24
EAX 28
ECX 2C
EDX 30
EBX 34
ESP 38 , Current
EBP sc (lask
Note: ES! 40
BIT_MAP_OFFSET EDI 44
must be < DFFFH 0000000000000000 ES 48
0000000000000000 [4c
0000000000000000 SS 50
0000000000000000 DS 54
©000000000000000 FS 58
0000000000000000 GS 5C
0000000000000000 LDT 60
BIT_MAP_OFFSET(15-0) 0000000000000000 1 fss /
Available N .} DEBUG
N System Status, etc.) TE‘G"
in Am386DXL CPU TSS
31 24 |23 16 | 15 8|7 ofw
63 56 |55 48 | 47 40{ 39 32| BIT_MAP_OFFSET
95 88 | 87 80 | 79 72| 71 64
96 |OFFSET+C
———— - OFFSET+10
) 1
. ‘ﬁm Ei\sn anl N X,
| mase ol 65407 " g Pe?'55i°‘; B"’:‘I‘(’: OFFSET + 1FEC
E &) Trwugsirglne‘ 0 E 65439 (Ponr: B;:::; n)al:; be OFFSET + 1FFO
e e e m-- . 65471 Truncated using TSS Limit.) OFFSET + {FF4
Task Register 65503 65472 |OFFSET +1FF8
TRl Selector | 65535 | 65504 |OFFSET + 1FFC
15 0 FFH |OFFSET+2000
4
a1 Am386DXL CPU TSS Descriptor (in GDT) TSS Limit=OFFSET + g°°°H
Selector Base 15-0 Segment Limit 15-0
- DPL Type
Type =9: Available Based1-24 g |1]ojo| Mg |P | [°] || A%
Am386DXL CPU TSS,
Type = B: Busy 15021B-032a
Am386DXL CPU TSS Figure 29a. TSS and TSS Registers

Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

1-249

31302928 2726 25 24 2322 21201918 17 16 1514131211109 8 76 54 3 2 1 0
3|11 11 01 1 0J0 000 1t 11 1]0 1001 100{000 00011
63l0o 1t o001 1|1t 100 10101 11 11 100(111 11001
%111 11 11 1 1]t 1+ 11 111 1)1 1t1+ 1111111111111
127({00 0 0 00 O 0j0 0 0O O O O O({0O 0O O O O 0OOOC{0OOO 00COOO

111 11111
~ ~
o~ otc. ~

/O Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

150218-032b

Figure 29b. Sample I/O Permission Bit Map

Task Switching

A very important attribute of any multitasking/multi-user
operating systems is its ability to rapidly switch between
tasks or processes. The Am386DXL microprocessor di-
rectly supports this operation by providing a task switch
instruction in hardware. The Am386DXL. CPU task
switch operation saves the entire state of the machine
(all of the registers, address space, and a link to the pre-
vious task), loads a new execution state, performs pro-
tection checks, and commences execution in the new
task, in about 17 ms. Like transfer of control via gates,
the task switch operation is invoked by executing an
intersegment JMP or CALL instruction that refers to a
Task State Segment (TSS), or a task gate descriptor in
the GDT or LDT. AnINT ninstruction, exception, trap, or
external interrupt may also invoke the task switch opera-
tion if there is a task gate descriptor in the associated
IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
29a) containing the entire Am386DXL microprocessor
execution state while a task gate descriptor contains a
TSS selector. The Am386DXL CPU supports both
80286 and Am386DXL CPU style TSSs. Figure 30
shows a 80286 TSS. The limit of a Am386DXL micro-
processor TSS must be greater than 0064H (002BH for
a 80286 TSS) and canbe as large as 4 Gb. In the addi-
tional TSS space, the operating system is free to store
additional information, such as the reason the task is in-
active, time the task has spent running, and open files
belonging to the task.

Each task must have a TSS associated with it. The cur-
rent TSS is identified by a special register in the
Am386DXL microprocessor called the Task State Seg-
ment Register (TR). This register contains a selector re-
ferring to the task state segment descriptor that defines
the current TSS. A hidden base and limit register associ-
ated with TR are loaded whenever TR is loaded with a
new selector. Returning from a task is accomplished by
the IRET instruction. When IRET is executed, control is
returned to the task which was interrupted. The current
executing task’s state is saved in the TSS and the old
task state is restored from its TSS.

Several bits in the flag register and machine status word
(CRO) give information about the state of a task that are
useful to the operating system. The Nested Task (NT)
(bit 14 in EFLAGS) controls the function of the IRET in-
struction. If NT = 0, the IRET instruction performs the
regular return; when NT = 1, IRET performs a task
switch operation back to the previous task. The NT bit is
set or reset in the following fashion.

When a CALL or INT instruction initiates a task switch,
the new TSS will be marked busy and the back link
field of the new TSS set to the old TSS selector. The NT
bit of the new task is set by CALL or INT initiated task
switches. An interrupt that does not cause a task switch
will clear NT. (The NT bit will be restored after execution
of the interrupt handler.) NT may also be set or cleared
by POPF or IRET instructions.

The Am386DXL microprocessor Task State Segment is
marked busy by changing the descriptor type field from
Type 9H to Type BH. An 80286 TSS is marked busy
by changing the descriptor type field from Type 1 to
Type 3. Use of a selector that references a busy task
state segment causes an Exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a task
is a virtual 8086 task. If VM = 1, then the tasks will use
the Real Mode addressing mechanism. The virtual 8086
environment is only entered and exited via a task switch
(see Section Virtual Mode).

The coprocessor’s state is not automatically saved
when a task switch occurs, because the incoming task
may not use the coprocessor. The Task Switched (TS)
Bit (bit 3 in the CRO0) helps deal with the coprocessor’s
state in a multitasking environment. Whenever the
Am386DXL microprocessor switches tasks, it sets the
TS bit. The Am386DXL CPU detects the first use of a
processor extension instruction after a task switch and
causes the processor extension not available Exception
7. The exception handier for Exception 7 may then de-
cide whether to save the state of the coprocessor. A
processor extension not present Exception 7 will occur
when attempting to execute an ESC or WAIT instruction
if the Task Switched and Monitor coprocessor extension
bits are both set (i.e., TS=1 and MP=1).

This Materia

1-250

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

15 0

Back Link Selector to TSS 0

SP for CPL O 2)

SS for CPL 0 4 initial
SP for CPL 1 6 \ %?ELSL
S8 for CPL 1 8 0,1.2
SP for CPL 2 A

SS for CPL 2 C J

iP (Entry Point) E W

Flags 10

AX 12

CX 14

DX 16

BX 18 | curent
s wr G
BP iC

S! 1E

DI 20

ES Selector 22

CS Selector 24

SS Selector 26

DS Selector 28 J

Task’s LDT Selector 2A

vailabl
?L’;A ilable Qf,
15021B-033

Figure 30. 80286 TSS

The T bit in the Am386DXL microprocessor TSS indi-
cates that the processor should generate a debug ex-
ception when switching to atask. If T = 1, then upon en-
try to a new task, a debug Exception 1 will be generated.

Initialization and Transition to Protected Mode

Since the Am386DXL microprocessor begins executing
in Real Mode immediately after RESET, it is necessary
to initialize the system tables and registers with the ap-
propriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256-bytes long,
and GDT must contain descriptors for the initial code
and data segments. Figure 31 shows the tables and
Figure 32 shows the descriptors needed for a simple
Protected Mode Am386DXL microprocessor system. It
has a single code and single data/stack segment each
4 Gb long and a single privilege level PL=0.

The actual method of enabling Protected Mode is to load
CRO with PE bit set, via the MOV CR0, R/M instruction.

This puts the Am386DXL microprocessor in Protected
Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The fi-
nal step is to load all of the data segment registers with
the initial selector values.

An alternate approach to entering Protected Mode that
is especially appropriate for muhtitasking operating sys-
tems is to use the built in task-switch to load all of the
registers. In this case, the GDT would contain two TSS
descriptors in addition to the code and data descriptors
needed for the first task. The first JMP instruction in Pro-
tected Mode would jump to the TSS causing a task
switch and loading all of the registers with the values
storedinthe TSS. The TR should be initialized to point to
a valid TSS descriptor since a task switch saves the
state of the current task in a task state segment.
Paging

Paging Concepts

Paging is another type of memory management useful
for virtual memory multitasking operating systems. Un-
like segmentation that modularizes programs and data
into variable length segments, paging divides programs
into muttiple uniform size pages. Pages bear no direct
relation to the logical structure of a program. While seg-
ment selectors can be considered the logical name of
a program module or data structure, a page most
likely corresponds to only a portion of a module or data
structure.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of pages
from each active task need be in memory at any one
moment.

Paging Organization
Page Mechanism

The Am386DXL microprocessor uses two levels of ta-
bles to translate the linear address (from the segmenta-
tion unit) into a physical address. There are three com-
ponents to the paging mechanism of the Am386DXL
CPU: the page directory, the page tables, and the page
itself (page frame). Al memory-resident elements ofthe
Am386DXL CPU paging mechanism are the same size,
namely, 4 Kb. A uniform size for all of the elements sim-
plifies memory allocation and realiocation schemes,
since there is no problem with memory fragmentation.
Figure 33 shows how the paging mechanism works.

Am386DXL Microprocessor 1-251

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

15 0 . 31 ® crrrrrr
- FFFFFFFF
Reset Routines
S$ |ooto FFFFFFFO
Initialization
Gs Routines
es
User Memory
DS
)
GDTR [0017] Limit 00000118
00000100 Data Descriptor 00000110
Base Address Code Descriptor 00000108 [C2T
} Null Selector
IDTR [0OFF] Limit 00000100
‘ Interrupt 4
| 00000000 Descriptors (32) IDT
Base Address > 000:0000
150218-034
Figure 31. Simple Protected System
Data Segment Base 15-0 Segment Limit 15-0
Descriptor 0118 (H) FFFF (H)
Limit Base
Base 31-24 |G |D
ofo 19-16 1[ojoj1| 0yo0;1] 0| 23-16
00 (H) K F (H) | | °f 00 (H)
Code Segment Base 15-0 Segment Limit 15-0
Descriptor 0118 (H) FFFF (H)
Base 31-24 |G|D Limit Base
ofo 19-16 1/ojo}ji] 1j0p1|{o| 23-18
ooy [T] F | [°] 00 (H)
Null | Descriptor
31 24 15 8 0
15021B-035

Figure 32. GDT Descriptors for Simple System

Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It holds
the 32-bit linear address that caused the last Page Fault
detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of the
Page Directory. The lower 12 bits of CR3 are always
zero to ensure that the Page Directory is always page
aligned. Loading it via a MOV CR3, reg instruction
causes the Page Table entry cache to be flushed, as will

a task switch through a TSS that changes the value of
CRO. (See Translation Look-Aside Buffer.)

Page Directory

The Page Directory is 4-Kb long and allows up to 1024
Page Directory entries. Each Page Directory entry con-
tains the address of the next level of tables, the Page Ta-
bles and information about the page table. The contents
of a Page Directory entry are shown in Figure 34. The
upper 10 bits of the linear address (A31-A22) are used
as an index to select the correct Page Directory entry.

1-252

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

Two Level Paging Scheme

31 22 12 0

—Line—ar _’I Directory | Table |Oﬂsﬂ

Address

12

10 10 e
// Vy

Am386DXL CPU 31 [¢]

User
Memory

Address

31 0 31 0 +

CRO |

CRi D >

CR2 Page Table

CR3 Root

Directo
Control Registers) i

Figure 33. Paging Mechanism

15021B-036

31 1211 10 9 8 7 6 5 4 3

Page Table Address 31-12 Res%?ved o|l|o|D}{A|O]|O

(72 [=t

S

Figure 34. Page Directory Entry (Points to Page Table)

15021B-037

31 1211 10 9 8 7 6 5 4 3

N

-
o

Page Frame Address 31-12 Res?a?ved o|O|DIA|O]O

0wl c

=12

Figure 35. Page Table Entry (Points to Page)

15021B-038

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-253

This Materia

:‘ AMD

Page Tables

Each Page Table is 4 Kb and holds up to 1024 Page
Table entries. Page Table entries contain the starting
address of the page frame and statistical information
about the page (see Figure 35). Address bits A21-A12
are used as an index to select one of the 1024 Page Ta-
ble entries. The 20 upper-bit page frame address is con-
catenated with the lower 12 bits of the linear address to
form the physical address. Page tables can be shared
between tasks and swapped to disks.

Page Directory/Table Entries

The lower 12 bits of the Page Table entries and Page Di-
rectory entries contain statistical information about
pages and page tables respectively. The P (Present) bit
0 indicates if a Page Directory or Page Table entry can
be used in address translation. If P = 1, the entry can be
used for address translation; if P = 0, the entry can not
be used for translation. Note that the present bit of the
page table entry that points to the page where code is
currently being executed should always be set. Code
that marks its own page not present should not be writ-
ten. All of the other bits are available for use by the soft-
ware. For example the remaining 31 bits could be used
to indicate where on the disk the page is stored.

The A (Accessed) bit 5 is set by the Am386DXL micro-
processor for both types of entries before a read or write
access occurs to an address covered by the entry. The
D (Dirty) bit 6 is set to 1 before a write to an address cov-
ered by that page table entry occurs. The D bit is unde-
fined for Page Directory entries. When the P, A, and
D bits are updated by the Am386DXL CPU, the micro-
processor generates a Read-Modify-Write cycle that
locks the bus and prevents conflicts with other proces-
sors or peripherals. Software that modifies these bits
should use the LOCK prefix to ensure the integrity of the
page tables in multi-master systems.

The 3 bits marked OS Reserved in Figures 34 and 35
(bits 11-9) are software definable. OSs are free to use
these bits for whatever purpose they wish. An example
use of the OS Reserved bits would be to store informa-
tion about page aging. By keeping track of how long a
page has been in memory since being accessed, an op-
erating system can implement a page replacement al-
gorithm like Least Recently Used.

The (User/Supervisor) U/S bit 2 and the (Read/Write)
R/W bit 1 are used to provide protection attributes for
individual pages.

Page Level Protection (R/W, U/S Bits)

The Am386DXL microprocessor provides a set of pro-
tection attributes for paging systems. The paging
mechanism distinguishes between two levels of protec-
tion: user, which corresponds to level 3 of the segmenta-
tion based protection, and supervisor, which encom-
passes all of the other protection leveis (0, 1, 2).

Programs executing at level 0, 1, or 2 bypass the page
protection, although segmentation based protection is
still enforced by the hardware.

The U/S and R/W bits are used to provide User/Supervi-
sor and Read/Write protection for individual pages or for
all pages covered by a Page Table Directory entry. The
U/S and R/W bits in the first level Page Directory Table
apply to all pages described by the page table pointed to
by that directory entry. The U/S and R/W bits in the sec-
ond level Page Table entry apply only to the page de-
scribed by that entry. The U/S and R/W bits for a given
page are obtained by taking the most restrictive of the
U/S and R/W bits from the Page Directory Table entries
and the Page Table entries and using these bits to ad-
dress the page.

Example: If the U/S and R/W bits for the Page Directory
entry were 10 and the U/S and R/W bits for the Page Ta-
ble entry were 01, the access rights for the page would
be 01, the numerically smaller of the two. Table 12
shows the effect of the U/S and R/W bits on accessing
memory.

Table 12. Protection Provided by R/W and U/S

Permitted Permitted Access
uU/sS { RW Level 3 Levels 0,1, or 2
0 None Read/MWrite
1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/MWrite

However, a given segment can be easily made read-
only for ievel 0, 1, or 2 via the use of segmented protec-
tion mechanisms (see Section Protection).

Translation Look-Aside Buffer

The Am386DXL microprocessor paging hardware is de-
signed to support demand paged virtual memory sys-
tems. However, performance would degrade substan-
tially if the processor was required to access two levels
of tables for every memory reference. To solve this
probiem, the Am386DXL device keeps a cache of the
most recently accessed pages, this cache is called the
Translation Look-Aside Buffer (TLB). The TLB is a four-
way set associative 32-entry page table cache. It auto-
matically keeps the most commonly used Page Table
entries in the processor. The 32-entry TLB coupled with
a 4K-page size results in coverage of 128 Kb of memory
addresses. For many common multitasking systems,
the TLB will have a hit rate of about 98%. This means
that the processor will only have to access the two-level
page structure on 2% of all memory references. Figure
36 illustrates how the TLB complements the Am386DXL
microprocessor’s paging mechanism.

1-254

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

avp &0

32 Entries Physical
Linear] Memory
Address | Translation
——p | Look-Aside Hit Y
Buffer
I 3
Miss
31 0
b
0
Page Page
Directory Table
*98% Hit Rate
15021B-039

Figure 36. Translation Look-Aside Buffer

Paging Operation

The paging hardware operates inthe following fashion:
the paging unit hardware receives a 32-bit linear ad-
dress from the segmentation unit. The upper 20 linear
address bits are compared with all 32 entries in the TLB
to determine if there is a match. lf thereisamatch (i.e., a
TLB hit), then the 32-bit physical address is calculated
and will be placed on the address bus.

However, if the Page Table entry is not in the TLB, the
Am386DXL microprocessor will read the appropriate
Page Directory entry. If P = 1 on the Page Directory en-
try indicating that the page table is in memory, then the
Am386DXL device will read the appropriate Page Table
entry and set the Access bit. If P =1 onthe Page Table
entry indicating that the page is in memory, the
Am386DXL device will update the Access and Dirty bits
as needed and fetch the operand. The upper 20 bits of
the linear address, read from the page table, will be
stored in the TLB for future accesses. However, if P =0
for either the Page Directory entry or the Page Table
Entry, then the processor will generate a Page Fault, an
Exception 14.

The processor will also generate an Exception 14, Page
Fault, if the memory reference violated the page protec-
tion attributes (i.e., U/S or R/W; tryingtowrite to a read-
only page). CR2 will hold the linear address that caused
the page fault. If a second page fault occurs while the
processor is attempting to enter the service routine for
the first, then the processor will invoke the Page Fault
{Exception 14) handler a second time, rather than the
Double Fault (Exception 8) handler. Since Exception 14
is classified as afault, CS:EIP will point to the instruction

causing the page fault. The 16-bit error code pushed as
part of the page fault handler wili contain status bits
which indicate the cause of the Page Fault.

The 16-bit error code is used by the operating system to
determine how to handle the Page Fault. Figure 37
shows the format of the page-fault error code and the in-
terpretation of the bits.

Note: Even though the bits in the error code (U/S, RIW,
and P) have similar names as the bits in the Page Direc-
tory/Table entries, the interpretation of the error code
bits is different. Figure 38 indicates what type of access
caused the Page Fault.

15 3 210
Uw
ufujujujujuiujujujujuju]u P
S|R
150218-040

Figure 37. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access causing
the fault occurred when the processor was executing
the User Mode (U/S=1) or in Supervisor mode
(UIS=0).

R/W: The R/W bit indicates whether the access causing
the fault was a Read (R/W = 0) or a Write (R'W=1).
P: The P bit indicates whether a Page Fault was caused
by a not-present page (P = 0) or by apage level protec-
tion violation (P = 1).

U: Undefined.
u/s R/W Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S =0, even if the
program is executing at level 3.

15021B-041

Figure 38. Type of Access Causing Page Fault

Operating System Responsibilities

The Am386DXL microprocessor takes care of the page
address translation process, relieving the burden from
an operating system in a demand-paged system. The
operating system is responsible for setting up the initial
page tables and handling any page faults. The operating
system also is required to invalidate (i.e., fiush) the TLB
when any changes are made to any of the Page
Table entries. The operating system must reload CR3 to
cause the TLB to be flushed.

Am386DXL Microprocessor

1-255

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

Setting up the tables is simply a matter of loading CR3
with the address of the Page Directory and allocating
space for the Page Directory and the Page Tables. The
primary responsibility of the operating system is to im-
plement a swapping policy and handle all of the page
faults.

Afinal concern of the operating system s to ensure that
the TLB cache matches the information in the paging ta-
bles. In particular, any time the operating system sets
the P present bit of page table entry to zero, the TLB
must be flushed. Operating systems may want to take
advantage of the factthat CR3 s stored as partof a TSS
to give every task or group of tasks its own set of page
tables.

Virtual 8086 Environment

Executing 8086 Programs

The Am386DXL microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode (Virtual Mode). Of the two meth-
ods, Virtual 8086 Mode offers the system designer
the most fiexibility. The Virtual 8086 Mode allows the
execution of 8086 applications, while still aliowing the
system designer to take full advantage of the
Am386DXL device protection mechanism. in particular,
the Am386DXL CPU allows the simultaneous execution
of 8086 operating systems and its applications, and a
Am386DXL CPU operating system and both 80286
and Am386DXL microprocessor applications. Thus, ina
muiti-user Am386DXL CPU computer, one person
could be running a MS-DOS spreadsheet, another per-
son using MS-DOS, and a third person could be running
muttiple UNIX utilities and applications. Each person in
this scenario wouid believe that he had the computer
completely to himself. Figure 39 illustrates this concept.

Virtual 8086 Mode Addressing Mechanism

One of the major differences between Am386DXL mi-
croprocessor Real and Protected Modes is how the seg-
ment selectors are interpreted. When the processor is
executing in Virtual 8086 Mode, the segment registers
are used in an identical fashion to Real Mode. The
contents of the segment register is shifted left 4 bits
and added to the offset to form the segment base linear
address.

The Am386DXL microprocessor allows the operating
system to specify which programs use the 8086 style
address mechanism, and which programs use Pro-
tected Mode addressing, on a per task basis. Through
the use of paging, the 1-Mb address space of the Virtual
Mode task can be mapped to anywhere in the 4-Gb lin-
ear address space of the Am386DXL device. Like Real
Mode, Virtual Mode effective addresses (i.e., segment
offsets) that exceed 64 Kb will cause an Exception 13.
However, these restrictions should not prove to be im-
portant because most tasks running in Virtual 8086
Mode will simply be existing 8086 application programs.

Paging In Virtual Mode

The paging hardware allows the concurrent running
of multipie Virtual Mode tasks and provides protection
and operating system isolation. Although it is not
strictly necessary to have the paging hardware enabled
to run Virtual Mode tasks, it is needed in order to run
muttiple Virtual Mode tasks or to relocate the address
space of a Virtual Mode task to physical address space
greater than 1 Mb.

The paging hardware allows the 20-bit linear address
produced by a Virtual Mode program to be divided into
up to 256 pages. Each one of the pages can be located
anywhere within the maximum 4-Gb physical address
space of the Am386DXL microprocessor. In addition,
since CR3 (the Page Directory Base Register) is loaded
by atask switch, each Virtual Mode task can use a differ-
ent mapping scheme to map pages to different physical
locations. Finally, the paging hardware aliows the shar-
ing of the 8086 operating system code between multiple
8086 applications. Figure 39 shows how the Am386DXL
device paging hardware enables multiple 8086 pro-
grams to run under a virtual memory demand paged
system.

Protection and I/O Permission Bitmap

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual 8086
Mode programs are subject to all of the protection
checks defined in Protected Mode. (This is different
from Real Mode which implicitly is executing at privilege
level 0, the level of greatest privilege.) Thus, an attempt
to execute a privileged instruction when in Virtual 8086
Mode will cause an Exception 13 fault.

The following are privileged instructions, which may be
executed only at Privilege Level 0. Therefore, attempt-
ing to execute these instructions in Virtual 8086 Mode
(or anytime CPL > 0) causes an Exception 13 fauit.

LIDT; MOV DRn, reg; MOV reg,DRn;
LGDT; MOV TRn, reg; MOV reg, TRn;
LMSW; MOV CRn, reg:; MOV reg, CRn;
CLTS;
HLT;

Several instructions, particularly those applying to the
muititasking model and protection model, are available
only in Protected Mode. Therefore, attempting to exe-
cute the following instructions in Real Mode or in Virtual
8086 Mode generates an Exception 6 fautt.

LTR; STR;
LLDT; SLDT:
LAR; VERR;
LSL; VERW;
ARPL.

1-256

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

avp £

Page N

8086 OS

/)

Empty

Task 2
Page
Table

Page Directo
gTask2 i J

Virtual Mode
@86 Task

—

Page N

Page 1 ~——__]

8086 OS
> ™~

Empty

Page Task 1
Directory Page
Root Table

Virtual Mode Page Directory
8086 Task Task 1

Physical
Memory 45600000(H)

Available

00000000(H)
Task 1 8086 OS
Memory Memory
Task 2 Am386DXL CPU OS
Memory Memory

15021B-042

Figure 39. Virtual 8086 Environment Memory Management

The instructions that are IOPL-sensitive in Protected
Mode are:

IN; STI;

ouT; CLI;

INS;

OUTS ;

REP INS;

REP OUTS.

In Virtual 8086 Mode, a slightly different set of instruc-

tions are made IOPL-sensitive. The following instruc-
tions are I0PL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET.

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision al-
lows the IF flag (interrupt enable flag) to be virtualized to
the Virtual 8086 Mode program. The INT n software

interrupt instruction is aiso IOPL-sensitive in Virtual
8086 Mode. Note, however, that the INT 3 (op-code
OCCH), INTO, and BOUND instructions are not IOPL-
sensitive in Virtual 8086 Mode (they are not IOPL sensi-
tive in Protected Mode either).

Note that the /0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in Vir-
tual 8086 Mode. Rather, the /O instructions become
automatically sensitive to the /O Permission Bitmap
contained inthe Am386DXL CPU TSS. The I/O Permis-
sion Bitmap, automatically used by the Am386DXL mi-
croprocessor in Virtual 8086 Mode, is illustrated by Fig-
ures 29a and 23b.

The 1O Permission Bitmap can be viewed as a
0-64K bit string, that begins in memory at offset
Bit_Map_Offset in the current TSS. Bit_Map_Offset
must be < DFFFH so the entire bit map and the byte FFH
that follows the bit map are ali at offset < FFFFH fromthe
TSS base. The 16-bit pointer Bit_Map_Offset (15-0) is
found in the word beginning at offset 66H (102 decimal)
from the TSS base, as shown in Figure 29a.

Am386DXL Microprocessor

1-257

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

Each bit in the /O Permission Bitmap corresponds to a
single byte-side I/0 pont, as illustrated in Figure 29a. If a
bit is 0, /O to the corresponding byte-wide port can oc-
cur without generating an exception. Otherwise the I/O
instruction causes an Exception 13 fault. Since every
byte-wide I/O port must be protectable, all bits corre-
sponding to a Word-wide or Dword-wide port must be 0
for the Word-wide or Dword-wide I/0 to be permitted. If
all the referenced bits are 0, the /O will be allowed. If
any referenced bits are 1, the attempted I/0 will cause
an Exception 13 fault.

Due to the use of a pointer to the base of the I/0 Permis-
sion Bitmap, the bitmap may be located anywhere within
the TSS or may be ignored completely by pointing the
Bit_Map_Offset (15-0) beyond the limit of the TSS seg-
ment. In the same manner, only a small portion of the
64K 1/0 space need have an associated map bit by ad-
justing the TSS limit to truncate the bitmap. This elimi-
nates the commitment of 8K of memory when a com-
plete bitmap is not required, while allowing the fully gen-
eral case if desired.

Example of Bitmap for I/0 Ports 0-255: Setting the TSS
limit to {Bit_Map_Offset + 31 +1**} [**see note below]
will allow a 32-byte bitmap for the I/O ports 0-255, plus a
terminator byte of all 1s [**see note below]. This allows
the /0 bitmap to control VO Permission to /O ports
0-255 while causing an Exception 13 fault on attempted
17O to any /O port 256 through 65,565.

**Important Implementation Note: Beyond the last byte of
/O mapping, information in the I/O Permission Bitmap must
be a byte containing all 1s. The byte of all 1s must be within the
limit of the Am386DXL CPU TSS segment (see Figure 29a).

Interrupt Handling

In order to fully support the emulation of an 8086 ma-
chine, interrupts in Virtual 8086 Mode are handled in a
unique fashion. When running in Virtual Mode, all inter-
rupts and exceptions involve a privilege change back
to the host Am386DXL CPU operating system. The
Am386DXL microprocessor operating system deter-
mines if the interrupt comes from a Protected Mode ap-
plication or from a Virtual Mode program by examining
the VM bit in the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and execu-
tion passes to the interrupt routine at level 0, the VM bit
is cleared. However, the VM bit is still set inthe EFLAGS
image on the stack.

The Am386DXL microprocessor operating system in
turn handles the exception or interrupt and then returns
control to the 8086 program. The Am386DXL CPU oper-
ating system may choose to let the 8086 operating sys-
tem handle the interrupt or it may emulate the function of
the interrupt handler. For example, many 8086 operat-
ing system cails are accessed by PUSHing parameters
on the stack, and then executing an INT n instruction. If
the IOPL is set to 0 then all INT n instructions will be in-
tercepted by the Am386D XL microprocessor operating
system. The Am386DXL CPU operating system could

emulate the 8086 operating system’s call. Figure 40
shows how the Am386DXL microprocessor operating
system could intercept an 8086 operating system’s call
to Open a File.

The Am386DXL microprocessor operating system can
provide a Virtual 8086 Environment that is totally trans-
parent to the application software via intercepting and
then emulating 8086 operating system’s calls, and inter-
cepting IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 Mode is entered by executing an IRET in-
struction (at CPL = 0), or Task Switch (at any CPL) to
a Am386DXL microprocessor task whose Am386DXL
microprocessor TSS has a EFLAGS image containing a
1in the VM bit position while the processor is executing
in Protected Mode. That is, one way to enter Virtual
8086 Mode is to switch to a task with a Am386DXL de-
vice TSS that has a 1 in the VM bit in the EFLAGS im-
age. The other way is to execute a 32-bit IRET instruc-
tion at privilege level 0, where the stack has a 1 inthe VM
bit in the EFLAGS image. POPF does not affect the VM
bit even if the processor is in Protected Mode or level 0,
and so cannot be used to enter Virtual 8086 Mode.
PUSHF always pushes a 0 in the VM bit, even if the
processor is in Virtual 8086 Mode, so that a program
cannot tell if it is executing in Real Mode or in Virtual
8086 Mode.

The VM bit can be set by executing an IRET instruction
only at privilege level 0 or by any instruction or interrupt
that causes a task switch in Protected Mode (with VM =
1inthe new FLAGS image), and can be cleared only by
aninterrupt or exception in Virtual 8086 Mode. IRET and
POPF instructions executed in Real Mode or Virtual
8086 Mode will not change the value in the VM bit.

The transition out of Virtual 8086 Mode to Am386DXL
microprocessor Protected Mode occurs only on receipt
of an interrupt or exception (such as due to a sensitive
instruction). In Virtual 8086 Mode, all interrupts and
exceptions vector through the Protected Mode IDT,
and enter an interrupt handler in Am386DXL CPU Pro-
tected Mode. That is, as part of interrupt processing, the
VM bit is cleared.

Because the matching IRET must occur from leve! 0, if
an Interrupt or Trap gate is used to field an interrupt or
exception out of Virtual 8086 Mode, the gate must per-
form an interlevel interrupt only to level 0. Interrupt or
Trap gates through conforming segments or through
segments with DPL > 0, will raise a GP fault with the CS
selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 Mode must be
described by a TSS with the new Am386DXL micropro-
cessor format (Type 9 or 11 descriptor).

A task switch out of Virtual 8086 Mode will operate ex-

- actly the same as any other task switch out of a task with

an Am386DXL CPU TSS. All of the programmer visible

1-258

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

state, including the FLAGS register withthe VM bit setto
1, is storedinthe TSS. The segment registersinthe TSS
will contain 8086 segment base values rather than se-
lectors.

A task switch into a task described by a Am386DXL mi-
croprocessor TSSwill have an additional check to deter-
mine it the incoming task should be resumed in Virtual
8086 Mode. Tasks described by 80286 format TSSs
cannot be resumed in Virtual 8086 Mode, so no check is
required there (the FLAGS image in 80286 format TSS
has only the low-order 16 FLAGS bits). Before loading
the segment register images from a Am386DXL CPU
TSS, the FLAGS image is loaded so that the segment
registers are loaded from the TSS image as 8086 seg-
ment base values. The task is now ready to resume in
Virtual 8086 Execution Mode.

Transitions Through Trap and Interrupt Gates,
and IRET

A task switch is one way to enter or exit Virtual 8086
Mode. The other method is to exist through a Trap or In-
terrupt gate, as part of handling aninterrupt, andto enter
as part of executing an IRET instruction. The transition
out must use a Am386DXL microprocessor Trap gate
(Type 14) or Interrupt gate (Type 15) that must pointto a
non-contorming level 0 segment (DPL = 0) in order to
permit the trap handler to IRET back to the Virtual 8086
program. The gate must pointto a non-conforming level
0 segment to perform a level switch to level 0 so that
the matching IRET can change the VM bit. Am386DXL
device gates must be used, since 80286 gates save only
the lower 16 bits of the FLAGS register, so that the VM
bit will not be saved on transitions through the 80286
gates. Also, the 16-bit IRET (presumably) used to termi-
nate the 80286 interrupt handler will pop only the lower
16 bits from FLAGS, and will not affect the VM bit. The
action taken for a Am386DXL microprocessor Trap or
interrupt gate if an interrupt occurs while the task is exe-
cuting in Virtual 8086 Mode is given by the following se-
quence.

1. Save the FLAGS register in a temp to push later.
Tum off the VM and TF bits, and if the interrupt is
serviced by an Interrupt gate, turn off IF bit, also.

2. Interrupt and Trap gates must perform a level switch
from3 (where the VM86 program executes) to level 0
(so IRET can return). This process involves a stack
switch to the stack given in the TSS for privilege
jevel 0. Save the Virtual 8086 Mode SS and ESP
registers to push in a later step. The segment
register load of SS will be done as a Protected Mode
segment load since the VM bit was turned off above.

3. Pushthe 8086 segment register values onto the new
stack, in the order: GS, FS, DS, ES. These are
pushed as 32-bit quantities with undefined values in
the upper 16 bits. Then load these 4 registers with
null selectors (0).

4. Push the old 8086 stack pointer onto the new stack
by pushing the SS register (as 32-bit, high bits

undefined), then pushing the 32-bit ESP register
saved above.

5. Push the 32-bit FLAGS register saved in step 1.

6. Push the old 8086 instruction pointer onto the new
stack by pushing the CS register (as 32-bits, high bits
undefined), then pushing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate and begin execution of the interrupt routine in
Protected Am386DXL Microprocessor Mode.

The transition out of Virtual 8086 Mode performs a level
change and stack switch, in addition to changing backto
Protected Mode. In addition, all of the 8086 segment
register images are stored on the stack (behind the
SS:ESP image), and then loaded with null (0) selectors
before entering the interrupt handler. This will permit the
handler to safely save and restore the DS, ES, FS, and
GS registers as 80286 selectors. This is needed so that
interrupt handlers that “don’t care” about the mode of the
interrupted program can use the same prolog and epilog
code for state saving (i.e., push all registers in prolog,
pop all in epilog) regardiess of whether or not a native
mode or Virual 8086 Mode program was interrupted.
Restoring null selectors to these registers before exe-
cuting the IRET will not cause a trap in the interrupt han-
dler. Interrupt routines that expect values inthe segment
registers or return values in segment registers will have
to obtain/return values from the 8086 register images
pushed onto the new stack. They will need to know the
mode of the interrupted program in order io know
where to find/return segment registers, and also to
know how to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Am386DXL micro-
processor IRET instruction (operand size = 32) can be
used and must be executed at leve! 0 to change the VM
bit to 1.

1. Ifthe NT bitinthe FLAGS register is on, an inter-task
return is performed. The current state is stored inthe
current TSS, and the link field in the current TSS is
used to locate the TSS for the interrupted task which
is to be resumed.

Otherwise, continue with the following sequence.

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value active
in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is popped
first, then a 32-bit word is popped that contains the
CS value in the lower 16 bits. If VM = 0, this CS
load is done as a Protected Mode segment load. It
VM = 1, this will be done as an 8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was popped in step 1.

5. If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:IESP+8],
SSESP + 12}, SSESP +16], and SS:[ESP +20],

Am386DXL Microprocessor

1-259

Copyrighted By Its Respective Mnufacturer

n AMD

respectively, where the new value of ESP stored in
step 4 isused. Since VM = 1, these are done as 8086
segment register loads.

Eise if VM = 0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine. Null

out invalid selectors to trap if an attempt is made to
access through them.

6. If (RPL(CS) > CPL), pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,

followed by 32-bits containing SS inthe lower 16 bits.
1fVM =0, SS is loaded as a Protected Mode segment

register load. If VM = 1, an 8086 segment register
load is used.

7. Resume execution of the interrupted routine. The

VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) determines
whether the processor resumes the interrupted
routine in Protected Mode of Virtual 8086 Mode.

8086 Application|
Program

Am386DXL CPU
Application

Program

GP Fault

8086 Virtual 8086
Operating Mode Monitor
S #3
ystem o
Am386DXL CPU
OS File Open
Routines

Privilege

Privilege
Level 0
(Highest)

Level 3
{Lowaest)

8086 Application
Program

8086 Application makes “Open File Call* — causes General Protection Fault (Arrow #1)

Virtual 8086 Monitor intercepts call. Calls Am386DXL CPU OS (Arrow #2)
Am386DXL CPU OS “Opens File™ returns control to 8086 OS (Arrow #3)

8086 OS returns control to application (Arrow #4)

Transparent to Application

15021B-043

Figure 40. Virtual 8086 Environment Interrupt and Call Handling

1-260

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

FUNCTIONAL DATA
Introduction

The Am386DXL microprocessor features a straight
forward functional interface to the external hardware.
The Am386DXL CPU has separate parallel buses for
data and address. The data bus is 32 bits in width and
bi-directional. The address bus outputs 32-bit address
values in the most directly usable form for the high-
speed local bus: 4 individual Byte Enable signals and
the 30 upper-order bits as a binary value. The data and
address buses are interpreted and controlled with their
associated control signals.

A dynamic data bus sizing feature allows the processor
to handle a mix of 32- and 16-bit external buses on a
cycle-by-cycle basis (see Data Bus Sizing). If 16-bit bus
size is selected, the Am386DXL microprocessor auto-
matically makes any adjustment needed even perform-
ing another 16-bit bus cycle to complete the transfer if
that is necessary. Any 8-bit peripheral devices may be
connected to 32- or 16-bit buses with no loss of perform-
ance. A new address pipelining option is provided and
applies to 32- and 16-bit buses for substantially im-
proved memory utilization, especially for the most heav-
ity used memory resources.

The address pipelining option, when selected, typically
allows a given memory interface to operate with one
less wait state than would otherwise be required (see
Address Pipelining). The pipelined bus is also well
suited to interleaved memory designs. When address
pipelining is requested by the extemal hardware, the
Am386DXL microprocessor will output the address and
bus cycle definition of the next bus cycle (if it is internally
available) even while waiting for the current cycle to be
acknowledged.

Non-pipelined address timing, however, is ideal for ex-
ternal cache designs, since the cache memory will typi-
cally be fast enough to allow non-pipelined cycles. For
maximum design flexibility, the address pipelining op-
tion is selectable on a cycle-by-cycle basis.

The processor's bus cycle is the basic mechanism for
information transfer, either from system to processor or
from processor to system. Am386DXL microprocessor
bus cycles perform data transfer in a minimum of only
two clock periods. On a 32-bit data bus, the maximum
AmM386DXL device transfer at 20-MHz band-width is
therefore 40 Mb/s, at 25-MHz bandwidth is 50 Mb/s,
at 33-MHz bandwidth is 66 Mb/s, and at 40-MHz
bandwidth is 80 Mb/s. Any bus cycle will be extended for
more than two clock periods, however, if external hard-
ware withholds acknowledgment of the cycle. At the ap-
propriate time, acknowledgment is signaled by assert-
ing the Am386DXL microprocessor READY input.

The Am386DXL CPU can relinquish control of its local
buses to allow mastership by other devices, such as

direct memory access channels. When relinquished,
HLDA is the only output pin driven by the Am386D XL mi-
croprocessor providing near-complete isolation of the
processor from its system. The near-complete isolation
characteristic is ideal when driving the system from test
equipment and in fault-tolerant applications.

Functional data covered in this section describes the
processor’s hardware interface. First, the set of signals
available at the processor pins is described (see Signal
Description). Following that are the signal waveforms
occurring during bus cycles (see Bus Transfer Mecha-
nism, Bus Functional Description, and Other Functional
Descriptions).

Signal Description
Introduction

Ahead is a brief description of the Am386D XL CPU input
and output signals arranged by functional groups.

Example signal:

M/AO—High voltage indicates Memory selected
—Low voltage indicates I/0 selected

The signal descriptions sometimes refer to AC timing
parameters, such as t25 RESET Setup Time and t26
RESET Hold Time.

Clock (CLK2)

CLK2 provides the fundamental timing for the
Am386DXL microprocessor. it is divided by two inter-
nally to generate the internal processor clock used for
instruction execution. The internal clock is comprised of
two phases, phase one and phase two. Each CLK2 pe-
riod is a phase of the internal clock. Figure 42 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known phase
by ensuring the RESET signal falling edge meets its ap-
plicable setup and hold times, 125 and t26.

Data Bus (D31-D0)

These three-state, bi-directional signals provide the
general purpose data path between the Am386DXL mi-
croprocessor and other devices. Data bus inputs and
outputs indicate 1 when High. The data bus can transfer
data on 32- and 16-bit buses using a data bus sizing fea-
ture controlied by the BS16 input. See Section Bus Con-
trol. Data bus reads require that read data setup and
hold times, t21 and t22, be met for correct operation. In
addition, the Am386DXL microprocessor requires that
ali data bus pins be at a valid logic state (High or Low) at
the end of each read cycle, when READY is asserted.
During any write operation (and during halt cycles and

Am386DXL Microprocessor

1-261

Copyrighted By Its Respective Mnufacturer

n AMD

CLK2
—_—Pp
2X Clock { Address Bus > A31-A2
BE3
——————>
32-Bit { D31-D0 <DLr_::a.a Bus BEZ 32-Bit
—>
Data BET Byte Address
» | Enables
ADS BEO
—]
Bus | ——B Am386DXL wR
Control —_—) BS6 Microprocessor D/C
READY =" | Bus Cycle
! _L_K)_’ Definition
LOCK
— >
HOLD
T —> PEREQ
Bus
P HLDA
Arbitratio —
roltration BUSY goprolcessor
ignalin
INTR ERROR g g
NMI
Interrupts { ——n———p|
__RESET GND Connections
‘——} Float
15021B-044
Figure 41. Functional Signal Groups
Processor Clock Processor Clock
Period Period
CLK2 Period CLK2 Period CLK2 Period CLK2 Period
f1 f2 f1 f2
CLK2 [——-—/;
Internal Am386DXL
Microprocessor \ \ / \\
Clock (Half of the -
Frgqugncy of 12.5 ns Min 40 MHz
CLK2) (40 MHz Max) | Am386DXL
CPU
15 ns Min |} 33 MHz
(33 MHz Max) | Am386DXL
CPU
40 ns Min 2!5 MHz
(25 MHz Max) | Am386DXL
CPU
i
50 ns Min 20 MHz
(20 MHz Max) Am386DXL
CPU
150218-045
Figure 42. CLK2 Signal and Internal Processor Clock
1-262 Am386DXL Microprocessor

This Materi al

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD :'

shut down cycles), the Am386DXL microprocessor al-
ways drives all 32 signals of the data bus even if the
current bus size is 16 bits.

Address Bus (BE3-BEO, A31-A2)

These three-state outputs provide physical memory
addresses or I/O port addresses. The address bus is
capable of addressing 4 Gb of physical memory space
(00000000H~-FFFFFFFFH), and 64 Kb of 1/0 address
space (00000000H-0000FFFFH) for programmed 1/O.
I/O transfers automatically generated for Am386DXL
microprocessor-to-coprocessor communication use Vo
addresses 800000F8H-800000FFH, so A31 is High in
conjunction with M/10 Low allows simple generation of
the coprocessor select signal.

The Byte Enable outputs, BE3-BED, directly indicate
which bytes of the 32-bit data bus are involved with the
current transfer. This is most convenient for external
hardware.

BED applies to D7-D0
BE1 applies to D15-D8
BE2 applies to D23-D16
BES3 applies to D31-D24
The number of Byte Enables asserted indicates the

physical size of the operand being transferred (1,2, 3, or
4 bytes). Refer to Section Operand Alignment.

When a memory write cycle or I/O write cycle is in pro-
gress and the operand being transferred occupies only
the upper 16 bits of the data bus (D31-D16), duplicate
data is simultaneously presented on the corresponding
lower 16 bits of the data bus (D15-D0). This duplication

is performed for optimum write performance on 16 bit
buses. The pattern of write data duplication is a function
of the Byte Enables asserted during the write cycle. Ta-
ble 13 lists the write data present on D31-D0, as a func-
tion of the asserted Byte Enable outputs BE3—BEO.

Bus Cycle Definition Signals (W/R, D/C, M0,
LOCK)

These three-state outputs define the type of bus cycle
being performed. W/R distinguishes between write and
read cycles. D/C distinguishes between data and con-
trol cycles. M/IO distinguishes between memory and /O
cycles. LOCK distinguishes between locked and un-
locked bus cycles.

The primary bus cycle definition signals are W/R, D/C,
and M/I0, since these are the signals driven valid as the
ADS (Address Status output) is driven asserted. The
LOCK is driven valid at the same time as the first locked
bus cycle begins, which due to address pipelining, could
be later than ADS is driven asserted. See Pipelined Ad-
dress. The LOCK is negated when the READY input
terminates the last bus cycle that was locked.

Exact bus cycle definitions, as a function of W/R, D/C,
and M/IO, are given in Table14. Note one combination
of W/R, D/T, and MO is never given when ADS is as-
serted (however, that combination, which is listed as
does not occur, may 0Ccur ¢ during idie bus states when
ADSis not asserted). if M/10, D/C, and W/R are qualified
by ADS asserted, then a decoding scheme may be sim-
plified by using this definition of the does not occur
combination.

Table 13. Write Data Duplication as a Function of BE3-BEO

Am386DXL CPU Byte Enables Am386DXL CPU Write Data Automatic
BE3 BE2 BE1 BED D31-D24 _ D23D16 __ D15-D8___ D7-Do_| Duplication?
High High High Low Undef Undef Undef A No
High High Low High Undef Undef B Undef No
High Low High High Undef (& Undef C Yes
Low High High High D Undef D Undef Yes
High High Low Low Undef Undef B A No
High Low Low High Undef] B Undef No
Low Low High High D C D (e} Yes
High Low Low Low Undef (o} B A No
Low Low Low High D C B Undef No
Low Low Low Low D [9] B A No

Key: D =Logical Write Data D31-D24 B = Logical Write Data D15-D8
C =Logical Write Data D23-D16 A =Logical Write Data D7-D0
Am386DXL Microprocessor 1-263

Copyrighted By Its Respective Mnufacturer

This Materi al

:‘ AMD

Table 14. Bus Cycle Definition

MI0 D/C W/R Bus Cycle Type Locked?
Low Low Low Interrupt Acknowledge Yes
Low Low High Does Not Occur —
Low High Low IO Data Read No
Low High High I/O Data Write No
High Low Low Memory Code Read No
High Low High Halt: Shutdown: No

Address =2 Address =0

"BEO High ~ BEOLow

BET High BET High

BE2 Low BE2 High

BE3 High BES High

A31-A2 Low A31-A2 Low
High High Low Memory Data Read Some Cycles
High High High Memory Data Write Some Cycles

Bus Control Signals (ADS, READY, NA
Introduction

The following signals allow the processor to indicate
when bus cycle has begun and allow other system hard-
ware to control address pipelining, data bus width, and
bus cycle termination.

Address Status (ADS)

This three-state output indicates that a valid bus bus cycle
definition and address (W/R, D/C, M/1O, BE3-BED, and
A31-A2) is being driven at the Am386DXL microproces-
sor pins. It is asserted during T1 and T2P bus states
(see Non-pipelined Address and Pipelined Address for
additional information on bus states).

Transfer Acknowledge (READY)

This input indicates the current bus cycle is complete,
and the active bytes indicated by BE3-BEO and BS16
are accepted or provided. When READY is sampled as-
serted during a read cycle or interrupt acknowledge cy-
cle, the Am386DXL microprocessor latches the input
data andterminates the cycle. When READY is sampled
asserted during a write cycle, the processor terminates
the bus cycle.

READY is ignored on the first bus state of all bus cycles,
and sampled each bus state thereafter until asserted.
READY must eventually be asserted to acknowledge
every bus cycle, inciuding Halt Indication and Shutdown
Indication bus cycles. When being sampled, READY
must always meet setup and hold times, t19 and t20, for
correct operation. See all sections of Bus Functional
Description.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the system is prepared to accept new values
of BE3-BEO, A31-A2, W/R, D/C, and M/IO from
the Am386DXL microprocessor even if the end of the

, BS16)

current cycle is not being acknowledged on READY. If
this input is asserted when sampled, the next address is
driven onto the bus provided the next bus request is al-
ready pending internally. See Address Pipelining and
Read and Write Cycles. NA must always meet setup
and hold times, t15 and t16, for correct operation.

Bus Size 16 (BS16)

The BS16 feature allows the Am386DXL microproces-
sor to directly connect to 32- and 16-bit data buses. As-
serting this input constrains the current bus cycle to use
only the lower-order half (D15-D0) of the data bus, cor-
responding to BED and BET. Asserting BS16 has no ad-
ditional effect if only BEO and/or BET are asserted in the
current_cycle. However, during bus cycles asserting
BEZ or BE3, asserting BS16 will automatically cause the
Am386DXL microprocessor to make adjustments for
correct transfer of the upper byte(s) using only physical
data signals D15-D0.

If the operand spans both halves of the data bus and
BS16 is asserted, the Am386DXL microprocessor will
automatically perform another 16-bit bus cycle. BS16
must always meet setup and hold times, t17 and t18, for
correct operation.

Am386DXL CPU I/O cycles are automatically gener-
ated for coprocessor communication. Since the
Am386DXL microprocessor must transfer 32-bit quanti-
ties between itself and a 387DX math coprocessor,
BS16 must not be asserted during 387DX math
coprocessor communication cycles.

Bus Arbitration Signals (HOLD, HLDA)

Introduction

This section describes the mechanism by which the
processor relinquishes control of its local buses when
requested by another bus master device. See

1-264

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

Entering and Exiting Hold Acknowledge for additional
information.

Bus Hold Request (HOLD)

This input indicates some device other than the
Am386DXL microprocessor requires bus mastership.

HOLD must remain asserted as long as any other de-
vice is a local bus master. HOLD is not recognized while
RESET is asserted. If RESET is asserted while HOLD is
asserted, RESET has priority and places the bus into an
idle state, rather than the hold acknowledge (high
impedance) state. HOLD is level-sensitive and is a syn-
chronous input. HOLD signals must always meet setup
and hold times, 123 and t24, for correct operation.

Bus Hold Acknowledge (HLDA)

Assertion of this output indicates the Am386DXL micro-
processor has relinquished control of its local bus in
response to HOLD asserted, and is in the Bus Hold
Acknowledge state.

The Hold Acknowledge state offers near-complete sig-
nal isolation. In the Hold Acknowledge state, HLDA is
the only signal being driven by the Am386DXL micro-
processor. The other output signals or bi-directional sig-
nals (D31-D0, BE3-BED, A31-A2, W/R, D/C, M/O,
LOCK, and ADS) are in a high-impedance state so the
requesting bus master may control them. Pullup resis-
tors may be desired on several signals to avoid spurious
activity when no bus master is driving them. See Resis-
tor Recommendations. Also, one rising edge occurring
on the NMI input during Hold Acknowledge is remem-
bered for processing after the HOLD input is negated.

In addition to the normal usage of Hold Acknowledge
with DMA controllers or master peripherals, the near-
complete isolation has particular attractiveness during
system test when test equipment drives the system and
in hardware-fault-tolerant applications.

Coprocessor Interface Signals (PEREQ, BUSY,
ERROR)

Introduction

inthe following sections are descriptions of signals dedi-
cated to the numeric coprocessor interface. In addition
to the data bus, address bus, and bus cycle definition
signals, these following signals control communication
between the Am386DXL microprocessor and its 387DX
math coprocessor extension.

Coprocessor Request (PEREQ)

When asserted, this input signal indicates a coproces-
sor request for a data operand to be transferred to/from
memory by the Am386DXL microprocessor. In re-
sponse, the Am386DXL CPU transfers information be-
tween the coprocessor and memory. Because
Am386DXL microprocessor has internally stored the
coprocessor op-code being executed, it performs the re-
quested data transfer with the correct direction and
memory address.

PEREQis level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

Coprocessor Busy (BUSY)

When asserted, this input indicates the coprocessor is
still executing an instruction and is not yet able to accept
another. Whenthe Am386D XL microprocessor encoun-
ters any coprocessor instruction that operates on the
numeric stack (e.g., load, pop, or arithmetic operation)
or the WAIT instruction, this input is first automatically
sampled until it is seen to be negated. This sampling of
the BUSY input prevents overrunning the execution of a
previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions are
allowed to execute even if BUSY is asserted, since
these instructions are used for coprocessor initialization
and exception-clearing.

BUSY is level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

BUSY serves an additional function. if BUSY is sampled
Low at the falling edge of RESET, the Am386DXL
microprocessor performs an internal self-test (see Bus
Activity During and Following Reset). If BUSY is sam-
pled High, no self-test is performed.

Coprocessor Error (ERROR)

This input signal indicates that the previous coprocessor
instruction generated a coprocessor error of a type
not masked by the coprocessor’s control register. This
input is automatically sampled by the Am386 DXL micro-
processor when a coprocessor instruction is encoun-
tered, and if asserted, the Am386DXL device generates
Exception 16 to access the error-handling software.

Several coprocessor instructions, generally those that
clear the numeric error flags in the coprocessor or
save coprocessor state, do execute without the
Am386DXL microprocessor generating Exception 16
even if ERROR is asserted. These instructions are
FNINIT, FNCLEX, FSTSW, FSTSWAX, FSTCW,
FSTENV, FSAVE, FESTENV, and FESAVE.

ERROR is level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

Interrupt Signals (INTR, NMI, RESET)
introduction

The foilowing descriptions cover inputs that can inter-
rupt or suspend execution of the processor’'s current
instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for inter-
rupt service, which can be masked by the Am386DXL
CPU Fiag Register IF bit. When the Am386DXL micro-
processor responds to the INTR input, it performs two
interrupt acknowledge bus cycles, and at the end of the
second, latches an 8-bit interrupt vector on D17-D0 to
identify the source of the interrupt.

Am386DXL Microprocessor

1-265

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

INTR is level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal. To assure recognition of an
INTR request, INTR should remain asserted until the
first interrupt acknowledge bus cycle begins.

Non-Maskable Interrupt Request (NMi)

This input indicates a request for interrupt service, which
cannot be masked by software. The non-maskable in-
terrupt request is always processed according to the
pointer or gate in slot 2 of the interrupt table. Because of
the fixed NMI slot assignment, no interrupt acknowledge
cycles are performed when processing NMi.

NMI is rising edge-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition of
NMI, it must be negated for at least eight CLK2 periods,
and then be asserted for at least eight CLK2 periods.

Once NMI processing has begun, no additional NMI's
are processed until after the next IRET instruction,
which is typically the end of the NMI service routine. If
NMl is re-asserted priorto that time, however, one rising
edge on NMI will be remembered for processing after
executing the next IRET instruction.

Reset (RESET)

This input signal suspends any operation in progress
and places the Am386DXL microprocessor in a
known reset state. The Am386DXL device is reset by
asserting RESET for 15 or more CLK2 periods (80 or
more CLK2 periods before requesting seif-test). When

RESET is asserted, all other input pins, except FLT, are
ignored, and all other bus pins are driven to an idle bus
state as shown in Table 15. if RESET and HOLD are
both asserted at a point in time, RESET takes priority
even if the Am386DXL device was in a Hold Acknowi-
edge state prior to RESET asserted.

RESET is level-sensitive and must be synchronous to
the CLK2 signal. If desired, the phase of the internal
processor clock and the entire Am386DXL micropro-
cessor state can be completely synchronized to external
circuitry by ensuring the RESET signal falling edge
meets its applicable setup and hold times, t25 and t26.

Table 15. Pin State (Idle Bus) During Reset

Pin Name Signal Level During Reset
ADS High

D31-DO High Impedance
BE3-BEO Low

A31-A2 High

WR Low

D/C High

Vo) Low

LOCK High

HLDA Low

Table 16. Am386DXL Microprocessor Signal Summary

Input Synch Output High
Signal Active Input/ or Asynch to | Impedance During
Name Function State Output CLK2 HLDA?
CLK2 Clock — I — —
D31-Do Data Bus High o S Yes
BE3-BEO Byte Enables Low o — Yes
A31-A2 Address Bus High o — Yes
W/R Wirite-Read Indication High (o} — Yes
D/C Data-Control Indication High o — Yes
M0 Memory-I/O indication High o —_— Yes
LOCK Bus Lock Indication Low o — Yes
ADS Address Status Low (o} — Yes
NA Next Address Request Low I S —
BS16 Bus Size 16 Low t S —
READY Transfer Acknowledge Low 1 S —
HOLD Bus Hold Request High | S —_—
HLDA Bus Hold Acknowledge High (o} — No
PEREQ Coprocessor Request High 1 A —
BUSY Coprocessor Busy Low | A —
ERROR Coprocessor Error Low 1 A —
INTR Maskable Interrupt Request High] A —
NMI Non-Maskable Intrpt Request High | A —
RESET Reset High [S —
1-266 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD a

Bus Transfer Mechanism

Introduction

All data transfers occur as a result of one or more bus
cycles. Logical data operands of byte, word, and dou-
ble-word lengths may be transferred without restrictions
on physical address alignment. Any byte boundary may
be used, although two or even three physical bus
cycles are performed as required for unaligned operand
transfers. See Dynamic Data Bus Sizing and Operand
Alignment.

The Am386DXL microprocessor address signals are
designed to simplify external system hardware. Higher-
order address bits are provided by A31-A2. Lower-
order address in the form of BE3—BED directly provides
linear selects for the four bytes of the 32-bit data bus.
Physical operand size information is thereby implicitly
provided each bus cycle in the most usable form.

Byte Enable outputs, BE3-BED, are asserted when their
associated data bus bytes are involved with the present
bus cycle, as listed in Table 17. During a bus cycle, any
possible pattern of contiguous asserted Byte Enable
outputs can occur, but never patterns having a negated
Byte Enable separating two or three asserted Enables.

Address bits A0 and A1 of the physical operand’s base
address can be created when necessary (for instance,

for MULTIBUS | or MULTIBUS Il interface), as a func-
tion of the lowest-order asserted Byte Enable. This is
shown by Table 18. Logicto generate A0 and A1 is given
by Figure 43.

Table 17. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Signal|Associated Data Bus Signals
BEC D7-D0 (Byte 0—least significant)
BET D15-D8 (Byte 1)
BE2 D23-D16 (Byte 2)
BE3 D31-D24 (Byte 3—most significant)

Each bus cycle is composed of at least two bus states.
Each bus state requires one processor clock period. Ad-
ditional bus states added to a singie bus cycle are called
wait states. See Bus Functional Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data can
be transferred between external devices and the
Am386DXL CPU at a maximum rate of one 4-byte
Dword every two processor clock periods, for a maxi-
mum bus bandwidth of 80 Mb/s (Am386DXL micropro-
cessor operating at 40-MHz processor clock rate).

BEO
L H
L|x§fHYL|L
- L H]L
X
BEZ H BE3
LyLx]L
H
x| x HJ x|L
L H L
BET
K — Map for A1 Signal
BED
L H
L Lix|LiyHYL
Llx|LRH .
BE2 H BES
" LiLyx|[H)
X | x @ x JL
L H L
BET

K — Map for A0 Signal

Figure 43. Logic to Generate A0, A1 from

foe)
m)
O

ﬂg

ml
m
o

|
R

3

-

A1l

AO

15021B-046

E3-BEO

Am386DXL Microprocessor

1-267

Copyrighted By Its Respective Mnufacturer

n AMD

Table 18. Generating A31-A0 from BE3-BEO and A31-A2

Am386DXL CPU Address Signals
A3l A2 BE3 BE2 BE1 BEO
Physical Base
Address
A3l | L.l A2l A1 { A0
A31 v . A2l 0 | O X X Low
A31 | e A2l 0| 1 X Low High
A3l | ..., A2l 1]o0 X Low High High
A3l | .e.ee... A2 1 |1 Low High High High
FFFFFFFFH
Physical 800000FFH
Memory 800000F8H Math Coprocessor
4Gb (See note) (387DX)
0000FFFFH
Accessible
Programmed
64 Kb /O Space
00000000H 00000000H
Physical Memory Space /0 Space

Note: Since A31 is High during automatic communication with coprocessor, A31 High and M/IO Low can be used to

easily generate a coprocessor select signal.

Figure 44. Physical Memory and I/O Spaces

15021B-047

1-268

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materia

AMD n

Memory and I/O Spaces

Bus cycles may access physical memory space or /O
space. Peripheral devices in the system may either be
memory-mapped, or /O-mapped, or both. As shown in
Figure 44, physical memory addresses range from
00000000H to FFFFFFFFH (4 Gb) and I/O addresses
from 00000000H to Q00OFFFFH (64 Kb) for pro-
grammed I/O. Note the I/0 addresses used by the auto-
matic /O cycles for coprocessor communication are
800000F8H to 800000FFH, beyond the address range
of programmed I/O, to allow easy generation of a
coprocessor chip select signal using the A31 and M/O
signals.

Memory and I/O Organization

The Am386DXL microprocessor datapath to memory
and I/0 spaces can be 32- or 16-bits wide. When 32-bits
wide, memory and I/O spaces are organized naturally
as arrays of physical 32-bit Dwords. Each memory or /O
Dword has four individually addressable bytes at con-
secutive byte addresses. The lowest-addressed byte is
associated with data signals D17-D0; the highest-
addressed byte with D31-D24.

The Am386DXL microprocessor includes a bus control
input, BS16, that also allows direct connection to 16-bit
memory or I/O spaces organized as a sequence of
16-bit word. Cycles to 32- and 16-bit memory or VO de-
vices may occur in any sequence, since the BS16 con-
trol is sampled during each bus cycle. (See Dynamic
Data Bus Sizing.) The Byte Enable signals, BE3-BEO,
allow byte granularity when addressing any memory or
1/0 structure, whether 32- or 16-bits wide.

Dynamic Data Bus Sizing

Dynamic Data Bus Sizing is a feature allowing direct
processor connection to 32- or 16-bit data buses for
memory or /0. A single processor may connect to both
size buses. Transfers to or from 32- or 16-bit ports are
supported by dynamically determining the bus width
during each bus cycle. During each bus cycle an ad-
dress decoding circuit or the slave device itself may as-
sert BS16 for 16-bit ports, or negate BS16 for 32-bit
ports.

Wwith BS16 asserted, the processor automatically con-
verts operand transfers larger than 16 bits, or mis-
aligned 16-bit transfers, into two or three transfers as re-
quired. All operand transfers physically occur on
D15-D0 when BS16 is asserted. Therefore, 16-bit
memories or IO devices only connect on data signals
D15-D0. No extra transceivers are required.

Asserting BS16 only affects the processor when BE2
and/or BE3 are asserted during the current cycle. If only
D15-DO are involved with the transfer, asserting BS16
has no affect since the transfer can proceed normally
over a 16-bit bus whether BS16 is asserted or not. In
otherwords, asserting BS16 has no effect when only the
lower half of the bus is involved with the current cycle.

There are two types of situations where the processor is
affected by asserting BS16, depending on which Byte
Enables are asserted during the current bus cycle.

Upper Half Only:
Only BE2 and/or BE3 asserted.

Upper and Lower Half:

Atleast BET, BE2 asserted (and perhaps also BEO
and/or BE3).

Effect of asserting BS16 during Upper Half Only read
cycles:

Asserting BS16 during Upper Half Only reads causes
the Am386DXL microprocessor to read data on the
lower 16 bits of the data bus and ignore data on the up-
per 16 bits of the data bus. Data that would have been
read from D31-D16 (as indicated by BE2 BEZ2 and BE3) will
instead be read from D15-D0, respectively.

Effect of asserting BS16 during Upper Half Only write
cycles:

Asserting BS16 during Upper Haif Only writes does not
affect the Am386DXL microprocessor. When only BE2
and/or BE3 are asserted during a Write cycle, the
Am386DXL microprocessor always duplicates data sig-
nals D31-D16 onto D15-D0 (see Table 13). Therefore,
no further Am386DXL CPU action is required to perform
these writes on 32- or 16-bit buses.

Effect of asserting BS16 during Upper and Lower Half
read cycles:

Asserting BS16 during Upper and Lower Half reads
causes the processor to perform two 16-bit read cycles
for compiete physical operand transfer. Bytes 0 and 1
(as indicated by BEO and BET) are read on the first cycle
using D15-DO0. Bytes 2 and 3 (as indicated by BEZ and
BES) are read during the second cycle, again using
D15-D0. D31-D16 are ignored during both 16-bit cy-
cles. BEO and BET are always negated during the sec-
ond 16-bit cycle. See Figure 54 Cycles 2 and 2a.

Effect of asserting BS16 during Upper and Lower Half
write cycles:

Asserting BS16 during Upper and Lower Half writes
causes the Am386DXL microprocessor to perform two
16-bit write cycles for complete physical operand trans-
fer. All bytes are available the first write cycle allowing
external hardware to receive Bytes 0 and 1 (as indicated
by BEO and BET) using D15-D0. On the second cycle
the Am386DXL microprocessor duplicates Bytes 2 and
3 on D15-D0 and Bytes 2 and 3 (as indicated by BE2
and BE3) are written using D15-DO. BED and BET are
always negated during the second 16-bit cycle. BS16
must be asserted during the second 16-bit cycle. See
Figure 54 Cycles 1 and 1a.

Am386DXL Microprocessor 1-269

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

Interfacing with 32- and 16-Bit Memories

In 32-bit-wide physical memories such as Figure 45,
each physical Dword begins at a byte address that is a
muttiple of 4. A31—A2 are directly used as a Dword
selects and BE3-BED as byte selects. B316 is negated
for all bus cycles involving the 32-bit array.

When 16-bit-wide physical arrays are included in the
system, as in Figure 46, each 16-bit physical word be-
gins at an address that is a multiple of 2. Note the ad-
dress is decoded to assert BS16 only during bus cycies
involving the 16-bit array. If desiring to use pipelined
address with 16-bit memories, then BE3-BEO and W/R
are also decoded to determine when BS16 should be

asserted. (See Pipelined Address with Dynamic Data
Bus Sizing.)

A31-A2 are directly usable for addressing 32- and
16-bit devices. To address 16-bit devices, A1 and two
Byte Enable signals are also needed.

To generate an A1 signal and two Byte Enable signals
for 16-bit access, BE3-BEO should be decoded asin Ta-
ble 19. Note certain combinations of BE3-BED are never
generated by the Am386DXL microprocessor, leading
to don't care conditions in the decoder. Any BE3-BEO
decoder, such as shown in Figure 47, may use the non-
occurring BE3-BED combinations to its best advantage.

32, Data Bus (D31-D0)
Am386DXL i 32-Bit
Microprocessor Address Bus (BES-BEO, A31-A2) | \er ory
=
High

Figure 45. Am386DXL Microprocessor with 32-Bit Memory 15021B-048
Data Bus (D31-D0)
32,
[.
Am386DXL \ 32-Bit
Microprocessor Address Bus Memory
(BE3-BED, A31-A2)
BST6
Add
Dee:;s:r 16 Data Bus (D15-D0)
7
¥ Address Bus (A31-A2) 16-Bit
Memory
(BE3-BEOQ) (BHE, BLE, A1)
15021B-049

Figure 46. Am386DXL Microprocessor with 32-Bit and 16-Bit Memory

1-270

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

avo &

Table 19. Generating A1, BHE and BLE for Addressing 16-Bit Devices

Am386DXL CPU Signals 16-BIt Bus Signals
e L em— Ee— —— — p— Comments
BE3 | BE2 | BE1 BEO Al BHE BLE (A0)
H* H* H* H* X X X X—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L X X X X—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L H* H* L* X X X X—not contiguous bytes
L H* L* H* X X X X—not contiguous bytes
L* H* L* L* X X X X—not contiguous bytes
L L H H H L L
L L H* L* X X X X—not contiguous bytes
L L L H L L H
L L L L L L L

This Materi al

BLE asserted when D7-DO of 16-bit bus is active.
BHE asserted when D15-D8 of 16-bit bus is active.
A1 Low for all even words; A1 High for all odd words.
Key: X =Don't care

H = High voltage level

L Low voltage level

* — A non-occurring pattern of Byte Enables; either none are asserted or the pattern has Byte Enables asserted for non-contiguous bytes.

Operand Alignment

with the flexibility of memory addressing on the
Am386DXL microprocessor, it is possibie to transfer a
logical operand that spans more than one physical
Dword or Word of memory or I/O. Examples are 32-bit
Dword operands beginning at addresses not evenly di-
visible by 4- or a 16-bit Word operand split between two
physical Dwords of memory array.

Operand afignment and data bus size dictates when
multiple bus cycles are required. Table 20 describes the
transfer cycles generated for all combinations of logical
operand lengths, alignment, and data bus sizing. When
muitiple bus cycles are required to transfer a multi-byte
logical operand, the highest-order bytes are transferred
first (but if BS16 asserted requires two 16-bit cycles be
performed, that part of the transfer is lowest-order first).

Bus Functional Description
Introduction

The Am386DXL microprocessor has separate, parallel
buses for data and address. The data bus is 32 bits in
width and bi-directional. The address bus provides a
32-bit value using 30 signals for the 30 upper-order ad-
dress bits and 4 Byte Enable signals to directly indicate
the active bytes. These buses are interpreted and
controlled via several associated definition or control
signals.

The definition of each bus cycle is given by three defini-
tion signals: M/10, W/R, and D/C. At the same time, a

valid address is present on the Byte Enable signals
BE3-BED and other address signals, A31-A2. A status
signal, ADS, indicates when the Am386DXL CPU is-
sues a new bus cycle definition and address.
Collectively, the address bus, data bus, and all associ-
ated control signals are referred to simply as the bus.
When active, the bus performs one of the bus cycles
below.

1. Read from memory space.

Locked read from memory space.

Write to memory space.

. Locked write to memory space.

. Read from 1/O space (or coprocessor).

. Write to /O space (or coprocessor).

. Interrupt acknowledge.

Indicate halt or indicate shutdown.

Table 14 shows the encoding of the bus cycle definition

signals for each bus cycle. See Section Bus Cycle
Definition.

The data bus has a dynamic sizing feature supporting
32- and 16-bit bus size. Data bus size is indicated to the
Am386DXL microprocessor using its Bus Size 16
(8S16) input. All bus functions can be performed with
either data bus size.

ONOOAWDN

Am386DXL Microprocessor 1-271

Copyrighted By Its Respective Mnufacturer

n AMD

BEO
L H
LL xJAYL|L — A
" HIL], o :]Do—Do—
ticix|t BE1
H
xLHJxL
L] H |L
BET

-
-

- = qx’

IJr"
—

X

o0

o

3

o
[os/
mi

(ol Nl
-

x

K — Map for 16-bit BHE signal

BEG

L H
LLxL"t?L
Li{x|L]H

BE2 H BE3

LiLYx][R
H

x| x x]L

tf H [L

BET

K — Map for 16-bit BLE signal (same as A0 signal in Figure 43).
15021B-050
Figure 47. Logic to Generate A1, BHE and BLE for 16-Bit Buses

Table 20. Transfer Bus Cycles for Bytes, Words, and Dwords

Byte-Length of Logical Operand
1 2 4
Physical Byte Addres xx | 00 01 10 11 00 01 10 11
in Memory (low-order bits),
Transfer Cycles over hb,* hd | hw, | h3,
32-Bit Data Bus blw w i wlyp | d |3 {w]|ib
'{gag,stfeDr (t)y%les over b w b, | w | hb, g/v hb, | hw, | mw,
-Bit Data Bus W
hb b b, | w o
mw b
Key: b= Byte transfer 3 =3-byte transfer
w = Word transfer d=Dword transfer
| = low-order portion h = high-order portion
m = mid-order portion x=Don't care

=BS16 asserted causes second bus cycle.
*For this case, 8086, 8088, 80186, 80188, 80286 transfer Ib first, then hb.

1-272 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

This Materi al

Cycle 1 Cycle 2 Cycle 3
Non-Pipelined Non-Pipelined Non-Pipelined
{Read) (Read) (Read)
T T2 T T2 T1 T2
o1 | 02|01 oz | o1 o2] o1 o2 et | e2| 1] o2 o
cue [ey e ey ol
BEs BEO. My [T IX Valid 1 Valid 2 Valid 3
{Outputs) |
oL N) NV N
(Inpl::; I:
(input)
(Otctﬁg |: ~ X vadt Valid 2 Valid 3
D31-D0 [——In —_—— ———~Cr|D—-—————- In2 —_—t In3 »—
(Input during Read)

Fastest non-pipelined bus cycles consist of T1 and T2

15021B-051

Figure 48. Fastest Read Cycles with Non-Plpelined Address Timing

When the Am386DXL CPU bus is not performing one of
the activities listed above, it is either idle or in the Hold
Acknowledge state, which may be detected by external
circuitry. The Idle state can be identified by the
Am386DXL microprocessor giving no further assertions
on its address strobe output (ADS) since the beginning
of its most recent bus cycle, and the most recent bus cy-
cle has been terminated. The Hold Acknowledge state is
identified by the Am386DXL CPU asserting its Hoid Ac-
knowledge (HLDA) output.

The shortest time unit of bus activity is abus state. Abus
state is one processor clock period (two CLK2 periods)
in duration. A complete data transfer occurs during a
bus cycle, composed of two or more bus states.

The fastest Am386DXL microprocessor bus cycle re-
quires only two bus states. For example, three consecu-
tive bus read cycles, each consisting of two bus states,
are shown by Figure 48. The bus states in each cycle
are named T1 and T2. Any memory or /O address may
be accessed by such a two-state bus cycle, if the exter-
nal hardware is fast enough. The high-bandwidth, two-
clock bus cycle realizes the full potential of fast main
memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the Am386DXL
microprocessor READY input. Acknowledging the bus

cycle at the end of the first T2 results in the shortest bus
cycle, requiring only T1 and T2. If READY is not immedi-
ately asserted, however, T2 states are repeated indefi-
nitely until the READY input is sampled asserted.

Address Plpelining

The address pipelining option provides a choice of bus
cycle timings. Pipelined or non-pipelined address timing
is selectable on a cycle-by-cycle basis with the Next Ad-
dress (NA) input.

When address pipelining is not selected, the current ad-
dress and bus cycle definition remain stable throughout
the bus cycle.

When_address pipelining is selected, the address
(BE3-BEO, A31-A2) and definition (W/R, D/C, and
M/IO) of the next cycle are available before the end of
the current cycle. To signal their availability, the
AmM386DXL microprocessor address status output
(ADS) is also asserted. Figure 49 iliustrates the fastest
read cycles with pipelined address timing.

Note from Figure 49, the fastest bus cycles using
pipelined address require only two bus states, named
T1P and T2P. Therefore, cycles with pipelined address
timing allow the same data bandwidth as non-pipelined
cycles, but address-to-data access time is increased
compared to that of a non-pipelined cycle.

Am386DXL Microprocessor 1-273

Copyrighted By Its Respective Mnufacturer

This Materi al

eavo

Cycle 1
Pipelined
(Read)

T2P
o1 | 62) 01 | 02 | o1

CLK2
(Input) [

BE3-BED, A31-A2

TP

Cycle 2 Cycle 3
Pipelined Pipelined
(Read) (Read)
T2P T1P T2P

62 o1 62 o1 62 o1 02

M/IO, D/C, WR [Valid 1 Valid 2

Valid 3 Valid 4

(Outputs)

ADS I:
(Output)

NA
(Input) [

7

= O
LOCK Valid 1 Valid 2 Valid 3
(Output)

——tee 2 >t — 3 -

D31-DO0 I
(Input during Read) I: __iD_——_ T In1

Fastest pipelined bus cycles consist of T1P and T2P

150218-052

Figure 49. Fastest Read Cycles with Pipelined Address Timing

By increasing the address-to-data access time,
pipelined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would be
required with pipelined address.

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an ad-
dress has been latched, pipelined availability of the next
address aillows decoding circuitry to generate chip se-
lects (and other necessary select signals) in advance,
so selected devices are accessed immediately when
the next cycle begins. In other words, the decode time
for the next cycle can be overlapped with the end of the
current cycle.

If a system contains a memory structure of two or more
interleaved memory banks, pipelined address timing
potentially allows even more overlap of activity. This is
true whenthe interleaved memory controller is designed
to allow the next memory operation to begin in one
memory bank while the current bus cycle is still activat-
ing another memory bank. Figure 50 shows the general
structure of the Am386DXL microprocessor with two-
bank and four-bank interleaved memory. Note each
memory bank of the interleaved memory has full data
bus width (32-bit data width typically, unless 16-bit bus
size is selected).

Further details of pipelined address timing are given in
Pipelined Address; Initiating and Maintaining Pipelined
Address; Pipelined Address with Dynamic Bus Sizing;
and, Maximum Pipelined Address Usage With 16-bit
Bus Size.

Read and Write Cycles
Introduction

Data transfers occur as a result of bus cycles, classified
as Read or Write cycles. During Read cycles, data is
transferred from an external device to the processor.
During Write cycles, data is transferred in the other di-
rection, from the processor to an external device.

Two choices of address timing are dynamically select-
able: non-pipelined or pipelined. After a bus idle state,
the processor always uses non-pipelined address tim-
ing. However, the NA (Next Address) input may be as-
serted to select pipelined address timing for the next bus
cycle. When pipelining is selected and the Am386DXL
microprocessor has a bus request pending internally,
the address and definition of the next cycle is made
available even before the current bus cycle is acknowi-
edged by READY. Generally, the NA input is sampled
each bus cycle to select the desired address timing for
the next bus cycle.

1-274

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD :l

Two-Bank Interteaved Memory:
a. Address signal A2 selects bank
b. 32-bit datapath to each bank

32, DataBus
Am386DXL 4 \
CPU Address Bus
A2 A2
A32 22
'é‘;"'t'“n"e | | DRam DRAM
nirofier Bank 0 Bank 1
Four-Bank Interleaved Memory:
a. Address signals A3 and A2 selects bank
b. 32-bit datapath to each bank
32 , Data Bus
Am386DXL 7
CcPU Address Bus N \ \
A3| A2 \ A3 | A2 \ A3 A2\ A3 A2\
A32 A32 A32 A32
Interloave DRAM DRAM DRAM DRAM
ntrofler Bank 0 Bank 1 Bank 2 Bank 3
150218053

Figure 50. Two-Bank and Four-Bank Interleaved Memory Structure

Two choices of physical data bus width are dynamically
selectable: 32 bits or 16 bits. Generally, the BS16 (Bus
Size 16) input is sampled near the end of the bus cycleto
confirm the physical data bus size applicable to the
current cycle. Negation of BS16 indicates a 32-bit size
and assertion indicates a 16-bit bus size.

If 16-bit bus size is indicated, the Am386DXL CPU auto-
matically responds as required to complete the transfer
onh a 16-bit data bus. Depending on the size and align-
ment of the operand, another 16-bit bus cycle may be re-
quired. Table 19 provides all details. When necessary,
the Am386DXL microprocessor performs an additional
16-bit bus cycle, using D15-D0 in place of D31-D16.

Terminating a Read cycle or Write cycle, like any bus cy-
cle, requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor in-
serts wait states into the bus cycle to allow adjustment
forthe speed of any external device. External hardware,

that has decoded the address and bus cycle type as-
serts the READY input at the appropriate time.

At the end of the second bus state within the bus cycle,
READY is sampled. At that time, if external hardware ac-
knowledges the bus cycle by asserting READY, the bus
cycle terminates as shown in Figure 51. If READY is ne-
gated as in Figure 52, the cycle continues another bus
state (a wait state) and READY is sampled again at the
end of that state. This continues indefinitely untii the cy-
cle is acknowiedged by READY asserted.

When the current cycle is acknowledged, the
Am386DXL microprocessor terminates it. When a Read
cycle is acknowledged, the Am386DXL CPU latches the
information present at its data pins. When a Write cycle
is acknowledged, the Am386DXL CPU write data re-
mains valid throughout phase one of the next bus state
to provide write data hold time.

Am386DXL Microprocessor

1-275

Copyrighted By Its Respective Mnufacturer

3
>
[

Idie Cycle 1 Cycle 2 Cycle 3 Idle Cycle 4 Idle
Non-Pipelined Non-Pipelined Non-Pipelined Non-Pipelined
(Write) (Read) (Write) (Read)
Ti T T2 T T2 T1 T2 Ti T T2

Valid 1

Valid 2

Valid 3

Valid 4

N

NV

This Materia

32-Bit 32-Bit 32-Bit 32-Bit
Bus Size Bus Size Bus Size Bus Size
BST6 [- " "
READY [
v v v v
End Cycle 1 End Cycle 2 End Cycle 3 End Cycle 4
LOCK I: Valid 1 Valid 2 Valid 3 Valid 4
D31-Do I: - Out)——-——-GrD——(Out 4 ——— —-——GrD———

Note: Idie states are shown here for diagram variety only. Write cycles are not always followed by an idie state. An active bus cycle can

immediately follow the write cycle.

15021B-054

Figure 5§1. Various Bus Cycles and Idle States with Non-Pipelined Address (Zero Wait States)

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined ad-
dress timing. For example, Figure 51 shows a mixture of
Read and Write cycles with non-pipelined address tim-
ing. Figure 51 shows that the fastest possible cycles
with non-pipelined address have two bus states per bus
cycle. The states are named T1 and T2. In phase one of
the T1, the address signals and bus cycle definition sig-
nals are driven valid, and to signal their availability,
address status (ADS) is simultaneously asserted.

During Read or Write cycles, the data bus behaves as
follows. If the cycle is a read, the Am386DXL micropro-
cessor floats its data signals to allow driving by the ex-
ternal device being addressed. The Am386DXL device
requires that all data bus pins be at a valid logic state
(High or Low) at the end of each read cycle, when
READY is asserted, even if all byte enables are not as-
serted. The system must be designed to meet this re-
quirement. If the cycle is a write, data signals are driven
by the Am386DXL device beginning in phase two of T1

1-276

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

until phase one of the bus state following cycle acknowl-
edgment.

Figure 52 illustrates non-pipelined bus cycles with one
wait added to Cycles 2 and 3. READY is sampled
negated at the end of the first T2 in Cycles 2 and 3.
Therefore, Cycles 2 and 3 have T2 repeated. Atthe end
of the second T2, READY is sampled asserted.

When address pipelining is not used, the address and
bus cycle definition remain valid during all wait states.

When wait states are added and you desire to maintain
non-pipelined address timing, it is necessary to negate
NA during each T2 state except the lastone, as shownin
Figure 52 Cycles 2 and 3. i NA is sampled asserted dur-
ing a T2 other than the last one, the next state would be
T2l (for pipelined address) or T2P (for pipelined
address) instead of another T2 (for non-pipelined
address).

Idle Cycle 1 Cycle 2 Idle Cycle 3 Idle
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Write) (Read)
Ti T T2 T T2 T2 Ti ™ T2 T2 Ti
e [U Uy uyuyuyuyuyuyiy
e[NN N NN NN NSNS NSNS
BE1-BEO,
A31-A2, [Valid Valid 2 Valid 3
MO, D/IC
wi [
A0S [NV /
AL
32-Bit 32-Bit 32-Bit
Bus Size! Bus Size Bus Size
BST6 [XXX
READY [L KKK T
End (;;cle 1 End (;;(cle 2 End (;’ycle 3
] |
TocK [m valid1 X Valid 2 Valid 3
D31-DO |: ————t———t— Out -ttt ——

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can

immediately follow the Write cycle.

150218-055
Figure 52. Various Bus Cycles and Idle States with Non-Pipelined Address
(Various Number of Wait States)
Am386DXL Microprocessor 1-277

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

HOLD Negated « No Request

HOLD Asserted

HOLD Negated ¢

HOLD Negated
Request Pending

/ READY Asserted « HOLD Negated « No Request

No Request Request Pending ¢

HOLD Negated

RESET
Asserted

Bus States:

T [
'v READY Asserted ¢

HOLD Asserted

READY Asserted e HOLD Asserted

ALWAYS

p~—1

T1— First clock of a non-pipelined bus cycle (Am386DXL microprocessor drives new address and asserts ADS).
T2— Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

Ti — Idie state.

Th— Hold Acknowledge state (Am386DXL microprocessor asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.

HOLD Negated »
Request Pending
READY Negated »
NA Negated
15022B-017

Four basic bus states describe bus operation when not using pipelined address. These states do include BS16 usage for 32-bitand 16-bit bus
size. If asserting BST6 requires second 16-bit bus cycle to be performed, it is performed before HOLD asserted acknowledged.

Figure 53. Bus States (Not Using Pipelined Address)

Figure 53 illustrates the bus states and transitions when
address pipelining is not used. The bus transitions be-
tween four possible states: T1, T2, Ti, and Th. Bus cy-
cles consist of T1 and T2, with T2 being repeated for
wait states. Otherwise, the bus may be idle in the Ti
state, or in hold acknowledge, the Th state.

When address pipelining is not used, the bus state dia-
gram is as shown in Figure 53. When the bus is idie, it is
in state Ti. Bus cycles always begin with T1. T1 always
leadsto T2. If a bus cycle is not acknowledged during T2
and NA is negated, T2 is repeated. When a cycle is ac-
knowledged during T2, the following state will be T1 of
the next bus cycle if a bus request is pending internatly,
or Ti if there is no bus request pending, or Th if the
HOLD input is being asserted.

The bus state diagram in Figure 53 also applies to the
use of BS16. If the Am386DXL microprocessor makes
internal adjustments for 16-bit bus size, the adjustments
do not affect the external bus states. If an additional
16-bit bus cycle is required to complete a transfer on
a 16-bit bus, it also follows the state transitions shownin
Figure 53.

Use of pipelined address allows the Am386DXL CPU to
enter three additional bus states not shown in Figure 53.
Figure 59 in Pipelined Address is the complete bus state
diagram, including pipelined address cycles.
Non-Pipelined Address With Dynamic Data Bus
Sizing

The physical data bus width for any non-pipefined bus
cycle can be either 32 or 16 bits. At the beginning of the
bus cycle, the processor behaves as if the data bus is
32-bits wide. When the bus cycle is acknowledged by
asserting READY at the end of a T2 state, the most
recent sampling of BS16 determines the data bus size
for the cycle being acknowledged. If BS16 was most re-
cently negated, the physical data bus size is defined as
32 bits. If BS16 was most recently asserted, the size is
defined as 16 bits.

WhenBS16 is asserted and two 16-bitbus cycles are re-
quired to complete the transfer, BS16 must be asserted
during the second cycle; 16-bit bus size is not assumed.
Like any bus cycle, the second 16-bit cycle must be ac-
knowledged by asserting READY.

1-278

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

e [
wR [

ADbs [

[

-

Idle

A transfer requiring two
cycles on 16-bit data bus

A transfer requiring two
cycles on 16-bit data bus
P

P
Cycle 1 Cycle 1A Cycle 2 Cycle 2A
Non-Pipelined Non-Pipelined Non-Pipelined Non-Pipelined Idle

(Write ———» Wirite) (Read ——1—» Read)

Part One Part Two Part One Part Two
T T2 T1 T2 T T2 T1 T2 Ti
Always Always
1 1
Valid 1 Negated Valid 3 Negated
During Part Two During Part Two
Xe——— valid 1 e—— valid2

This Materi al

BST6 [
16-Bit 16-Bit 16-Bit 16-Bit
Bus Size Bus Size Bus Size Bus Size
RV [AN | ¢
TocK [X Valid 1 Valid 2
d15-do d31-d16 d15—|d0 d31-d16
D15-D0 [— Out ou 14— -4 -
d31-d16 Ignored Ignored
D31-D16 [(< ot ————)—— —4- -
L] | 1
Key: Dn = Physical data pin n
dn = Logical data pinn
15021B-057
Figure 54. Asserting BS16 (Zero-Wait-States, Non-Pipelined Address)
Am386DXL Microprocessor 1-279

Copyrighted By Its Respective Mnufacturer

n AMD

A transfer requiring two
cycles on 16-bit data bus
A

- ~
Cycle 1 Cycle 1A
Idle Non-Pipelined Non-Pipelined N C)F”‘:"e |2 g
(Read N B Read) on-W u.i)te ine
Part One Part Two (Write)

Ti T T2 T1 T2 T2 ™ T2

LG LE GG
e VaVa VYV VaVa Vs VaVa Vs Va

BET-BEO [Valid 1 Negated during Valid 2
Part Two
A31-A2, [+————— Vald1 — Valid 2
MO, D/IC
wR [
ADS [/
Note: NA must be negated here to
allow recognition of asserted
BS16 in final T2.
NA [TN CER e
+ 4 32-Bit
Bus Size
i
BS6 [
v v
16-Bit 16-Bit
Bus Size Bus Size
Aerov [XXX | R AN AN

Otk [X Valid 1 Valid 2

T 1 T
d15-do d31-d16 I d157d0

p1s-Do [— - ————t—— —_—————— Out

[

Ignored Ignored d31 —l—d1 6
D31-D16 [— -———t—— g —— - out
I I
Key: Dn = Physical data pin n
dn = Logical data pin n

15021B-058

Figure 55. Asserting BS16 (One-Wait-State, Non-Pipelined Address)

1-280 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materia

AMD n

When a second 16-bit bus cycle is required to complete
the transter over a 16-bit bus, the addresses generated
for the two 16-bit bus cycles are closely related to each
other. The addresses are the same, except BEQ and
BET are always negated for the second cycle. This is be-
cause data on D15-D0 was already transferred during
the first 16-bit cycle.

Figures 54 and 55 show cases where assertion of BS16
requires a second 16-bit cycle for complete operand
transter. Figure 54 illustrates cycles without wait states.
Figure 55 illustrates cycles with one wait state. In Figure
55 Cycle 1, the bus cycle duringwhich BS16 is asserted,
note that NA must be negated in the T2 state(s) prior to
the last T2 state. This is to allow the recognition of BS16
asserted in the final T2 state. The relation of NA and
BS16 is given fully in Pipelined Address, but Figure 55
illustrates this only precaution you need to know when
using BS16 with non-pipelined address.

Pipelined Address

Address pipelining is the option of requesting the ad-
dress and the bus cycle definition of the next internally
pending bus cycle before the current bus cycle is ac-
knowledged with READY asserted. ADS is asserted by
the AM386DXL microprocessor when the next address
is issued. The address pipelining option is controlied on
a cycle-by-cycle basis with the NA input signal.

Once a bus cycle is in progress and the current address
has been valid for at least one entire bus state, the NA
input is sampled at the end of every phase one until the
bus cycle is acknowledged. During non-pipelined bus
cycles, therefore, NAis sampled at the end of phase one
in every T2. An example is Cycle 2 in Figure 56, during
which NA is sampled atthe end of phase one of every T2

(it was asserted once during the first T2 and has no fur-

ther effect during that bus cycle).

ItNA is sampled asserted, the Am386DXL microproces-

soris free to drive the address and bus cycle definition of

the next bus cycle, and assert ADS, as soon as it has a

bus request internally pending. It may drive the next ad-

dress as early as the next bus state, whether the current
bus cycle is acknowledged at that time or not.

Regarding the details of address pipelining, the

Am386DXL CPU has the following characteristics.

1. For NA to be sampled asserted, BS16 must be
negated at the sampling window (see Figure 56
Cycles 2 through 4, and Figure 57 Cycles 1 through
4).1fNA and BST6 are both sampled asserted during

the last T2 period of a bus cycle, BS16 asserted has
priority. Therefore, if both are asserted, the current
bus size is takento be 16 bits and the next address is
not pipelined.

2. The next address may appear as early as the bus
state after NA was sampled asserted (see Figure 56
or 57). In that case, state T2P is entered immedi-
ately, However, when there is not an internal bus
request already pending, the next address will not be
available immediately after NA is asserted and T2l
is entered instead of T2P (see Figure 58 Cycle 3).
Provided the current bus cycie is not yet acknow-
ledged by READY asserted, T2P will be entered as
soon as the Am386DXL microprocessor does drive
the next address. External hardware should
therefore observe the ADS output as confirmation
the next address is actually being driven on the bus.

3. Once NA is sampled asserted, the Am386DXL
microprocessor commits itself to the highest priority
bus request that is pending internally. It can no
longer perform another 16-bit transfer to the same
address should BS16 be asserted externally, so
thereafter must assume the current bus size is 32
bits. Therefore, if NA is sampled asserted within a
bus cycle, BS16 must be negated thereafter in that
bus cycle (see Figures 56, 57, 58). Consequently, do
not assert NA during bus cycles that must have BS16
driven asserted. See Dynamic Bus Sizing with
Pipelined Address.

4. Any address which is validated by a pulse on the
Am386DXL CPU ADS output will remain stable on
the address pins for at least two processor clock
periods. The Am386DXL microprocessor can not
produce a new address more frequently than every
two processor clock periods (see Figures 56, 57,58).

5. Only the address and bus cycle definition of the very
next bus cycle is available. The pipelining capability
cannot look further than one bus cycle ahead (see
Figure 58 Cycle 1).

The complete bus state transitiondiagram, including op-

eration with pipelined address is given by Figure 59.

Note it is a superset of the diagram for non-pipelined

address only and the three additional bus states for

pipelined address are drawn in bold.

The fastest bus cycle with pipelined address consists of
just two bus states, T1P and T2P (recall for non-
pipelined address it is T1 and T2). T1P is the first bus
state of a pipelined cycle.

Am386DXL Microprocessor

1-281

Copyrighted By Its Respective Mnufacturer

n AMD

Idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

T2 TP T2P TP T2

wel AN NN AR AR R
LV Ve Ve Ve Va Ve Ve Va Va Va

<=

m [X Valid 1 vaidz)¢ vaias I vaida
N—+A_|/
W/R [/
Aps [N\ \ _V 4

RTo Allow RTO Aliow To Allow
ecognizing ecognizing Recognizing
A NA c%

i { i

XXRKKKXXIKKEX

XPODBOOOR

Valid 1

Valid 2

Valid 3

Valid 4

Out

A

in Out

TP

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA is only sampled during wait

states. Therefore, to begin address pipelining during a group of non-

one wait state (Cycle 2 above).

pipelined bus cycles requires a non-pipelined cycle with at least

15021B-059

Figure 56. Transitioning to Pipelined Address During Burst of Bus Cycles

1-282

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

CLK2 [

(CLK) [

BE3-BED,
A31-A2,
MAQ, D/C

wAR [

ADS

[

Note: Following any idle bus state (Ti) the address is

after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The pipelined cycles (2, 3, 4 above) are shown

idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)
Ti T T2 T2P TP T2P TiP T2P | TIP T2i T2i

U

_/—

N/ N/ |

jupigigugipupspupups

\/_

(1L
Va

/——\f

Uy uyuy

N/ |

5]

Valid 1

Valid 2

Valid 3

Valid 4

/

K

/

%

To Aliow To Allow To Allow To Allow]
Recognizing Reco&r&izing Recognizing Recognizing
N NA NA
Valid 2 Valid 3 Valid 4

)__

with various numbers of wait states.

Out

Figure 57. Fastest Transition to Pipelined Address Following idle Bus State

__@,P,__

always non-pipelined and WA is only sampled during wait states. To start address pipelining

150218060

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-283

n AMD

Initiating and Maintalning Pipelined Address

Using the state diagram Figure 59, observe the transi-
tions from an idle state, Ti, to the beginning of a
pipelined bus cycle, T1P. From an idle state Ti, the first
bus cycle must begin with T1, and is therefore a non-
pipelined bus cycle. The next bus cycle will be pipelined,

however, provided NA is asserted and the first bus cycle
ends in a T2P state (the address for the next bus cycle is
driven during T2P). The fastest path from an idle state to
a bus cycle with pipelined address is shown in below:

Ti, Ti, Ti T1-T2-T2P TiP-T2P
Idie Non-Pipelined Pipelined
States Cycle ycle

T1-T2-T2P are the states of the bus cycle that estab-
lishes address pipelining for the next bus cycle, which
begins with T1P. The same is true after a bus hold state,
shown below:

Th, Th, Th T1-T2-T2P T1P-T2P
Hold Non-Pipelined Pipelined
Acknowledge Cycle ycle
States

The transition to pipeiined address is shown functionally
by Figure 57 Cycle 1. Note that Cycle 1 is used to transi-
tion into pipelined address timing for the 1e_subsequent
Cycles 2, 3, and 4 that are pipelined. The NA input is as-
serted at the appropriate time to select address pipe-
lining for Cycles 2, 3, and 4.

Once abus cycle is in progress and the current address
has become valid, the NA input is sampled at the end of
every phase one, beginning with the next bus state, until
the bus cycle is acknowledged. During Figure 57 Cycle
1 therefore, sampling begins in T2. Once NA is sampled
asserted during the current cycle, the Am386DXL mi-
croprocessor is free to drive a new address and bus cy-
cle definition on the bus as early as the next bus state.
In Figure 56 Cycle 1 for example, the next address
is driven during state T2P. Thus, Cycle 1 makes the

transition to pipelined address timing, since it begins
with T1 but ends with T2P. Because the address for Cy-
cle 2is available before Cycle 2 begins, Cycle 2is called
apipelined bus cycle, and it begins with T1P. Cycie 2 be-
gins as soon as READY asserted terminates Cycle 1.

Example transition bus cycles are Figure 57 Cycle 1 and
Figure 56 Cycle 2. Figure 57 shows transition during the
very first cycle after an idie bus state, which is the fastest
possible transition into address pipelining. Figure 56 Cy-
cle 2, shows atransition cycle occurring during a burst of
bus cycles. In any case, a transition cycle is the same
whenever it occurs: it consists at least of T1, T2 (you as-
sert NA at that time), and T2P (provided the Am386DXL
microprocessor has an internal bus request already
pending, which it almost always has). T2P states are re-
peated if wait states are added to the cycle.

Note three states (T1, T2, and T2P) are only required in
a bus cycle performing a transition from non-pipelined
address into pipelined address timing; for example, Fig-
ure 57 Cycle 1. Figure 57 Cycles 2, 3, and 4 show that
address pipelining can be maintained with two-state bus
cycles consisting only of T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined tim-
ing is maintained for the next cycle by asserting NA and
detecting that the Am386DXL CPU enters T2P during
the current bus cycle. The current bus cycle must end in
state T2P for pipelining to be maintained in 2d in the next cy-
cle. T2P isidentified by the assertion of ADS. Figures 56
and 57 however, show pipelining ending after Cycle 4,
because Cycle 4 ends in T2P. This indicates the
Am386DXL CPU did not have an internal bus request
prior to the acknowledgment of Cycle 4. If a cycle ends
with a T2 or T2, the next cycle will not be pipelined.

Realisticaliy, address pipelining is almost always main-
tained as long as NA is sampled asserted. This is so, be-
cause in the absence of any other request a code
prefetch request is always internally pending untit the in-
struction decoder and code prefetch queue are com-
pletely full. Therefore, address pipelining is maintained
for long bursts of bus cycles, if the bus is available (i.e.,
HOLD negated) and NA is sampled asserted in each of
the bus cycles.

This Materia

1-284 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Pipelined Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

T2P T2P TP T2 T2P TP T2P TP

wel AR AR ARy
Va VaVaval

[NN NN NN N
BE1-BED,
M;/\%,—S/% Valid 1 25 Valid 2 2 Valid 3 Valid 4

other bus cycle to perform,
which is not always
immediately after NA 'is

| 1

1 ADS is asserted as soon
as Am386DXL CPU has an-
asserted.

"]]
s [T

/Note:mgis asserted / As long as Am386DXL CPU enters the

in every T2P state. T2P state {Nrif)g Cycle 3, address pipe-
lining is maintained in Cycle 4.

|
NA [Y . e X
Asserting NA more than NA could have been asserted
once during any cycle| in T1P if desired. Assertion now is
has no additional the latest time possible to allow
effects. Am386DXL CPU to enter T2P
state to maintain pipelining in
Cycle 3.
B576 [
READY [_| O\ RN \QL_AXX'Z
LOCK [Valid 1 Valid 2 Valid 3 Valid 4
pa1-Do [X Out S S R O
1 I
150218061
Figure 58. Detalls of Address Pipelining During Cycles with Wait States
Am386DXL Microprocessor 1-285

This Material Copyrighted By Its Respective Manufacturer

n AMD

HOLD Asserted

READY Asserted »

HOLD Negated HOLD Ascortod

No Request
HOLD Negated o
Request Pending

HOLD
Asserted

READY Asserted o
HOLD Asserted

{No Request +
HOLD Asserted) o

NA Asserted
RESET NA Asserted
READY Asserted » (HOLD Asserted +
Asserted o READY Negated
| HOLD Negated e °9 i No F'iequest)
y No Request ™~ !
1
']
Always 1+ NA Negated '
G ' o Te
Request Pending e '
HOLD Negated READY Asserted o ;
: .
HOLD Negated « . HOLDPNB%?M
No Request equest Pending
READY Negated
READY Asserted » NE Nogated |
HOLD Negated s
Request Pending Negated «
NA Asserted »
| T2 HOLD Negated o

READY Asserted HOLD Negated No Request

Bus States:

T1 — First clock of a non-pipelined bus cycle (Am386DXL CPU drives new
address and asserts).

T2 — Subsequent clocks of a bus cycle when NA has not been sampled asserted
in the current bus cycle.

T2l— Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle but there is not yet an interal bus request pending
(Am386DXL CPU will not drive new address or assert ADS).

T2P—Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle and there is an internal bus request pending
(Am386DXL CPU drives new address and asserts).

T1P—First clock of a pipelined bus cycle.

Ti — Idle state.

Th — Hold Acknowledge state (Am386DXL CPU asserts HLDA).

Asserting NA for pipelined address gives access to three more bus states: T2I,
T2P, and T1P.
Using pipelined address, the fastest bus cycle consists of T1P and T2P.

Request Pending

READY Negated o
{No Request +

HOLD Asserted)
READY Negatede
Request Pending e
HOLD Negated

J

NA Asserted
HOLD Negated »
Request Pending

READY Asserted

READY Negated

150218062

Figure 59. Am386DXL Microprocessor Complete Bus States (Including Pipelined Address)

1-286

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materia

AMD n

Pipelined Address With Dynamic Data Bus Sizing

The BS16 feature allows easy interface to 16-bit data
buses. When asserted, the Am386DXL microprocessor
bus interface hardware performs appropriate action to
make the transfer using a 16-bit data bus connected on
D15-DO0.

There is a degree of interaction, however, between the
use of Address Pipelining and the use of Bus Size 16.
The interaction results from the multiple bus cycles re-
quired when transferring 32-bit operands over a 16-bit
bus. If the operand requires both 16-bit halves of the
32-bit bus, the appropriate Am386DXL microprocessor
action is a second bus cycle to complete the operand’s
transfer. It is this necessity that conflicts with NA usage.

When NA is sampied asserted, the Am386DXL micro-
processor commits itself to perform the next internally
pending bus request, and is allowed to drive the nextin-
ternally pending address onto the bus. Asserting NA
therefore makes it impossible for the next bus cycle to
again access the current address on A31-A2, such as
may be required when BS16 is asserted by the external
hardware.

To avoid conflict, the Am386D XL microprocessor is de-

signed with following two provisions.

1. To avoid conflict, BS16 must be negated in the current
bus cycle if NA has already been sampled asserted
in the current cycle. If NA is sampled asserted, the
current data bus size is assumed to be 32 bits.

. Also to avoid conflict, if NA and BS16 are both
asserted during the same sampling window, BS16
asserted has priority and the Am386DXL micro-
processor acts as if NA was negated at that time.

n

Certain types of 16- or 8-bit operands require no adjust-
ment for correct transfer on a 16-bit bus. Those are read
or write operands using only the lower half of the data
bus, and write operands using only the upper half
of the bus, since the Am386DXL CPU simultaneously
duplicates the write data on the lower half of the data
bus. For these patterns of Byte Enables and the W/R
signals, BST6 need not be asserted at the Am386DXL
CPU allowing NA to be asserted during the bus cycle if
desired.

Interrupt Acknowledge (INTA) Cycles

in response to an interrupt request on the INTR input
when interrupts are enabled, the Am386DXL micropro-
cessor performs two interrupt acknowledge cycles.
These bus cycles are similar to read cycles in that bus
definition signals define the type of bus activity taking
place, and each cycle continues until acknowledged by
READY sampled asserted.

The state of A2 distinguishes the first and second inter-
rupt acknowledge cycles. The byte address driven dur-
ing the first interrupt acknowledge cycle is 4 (A31-A3
Low, A2 High, BE3-BET High, and BEO Low). The ad-
dress driven during the second interrupt acknowledge
cycle is 0 (A31-A2 Low, BE3-BET High, BEO Low).

The TOCK output is asserted from the beginning of the
firstinterrupt acknowledge cycle until the end of the sec-
ond interrupt acknowledge cycle. Four idle bus states,
Ti, are inserted by the Am386DXL microprocessor be-
tween the two interrupt acknowledge cycles, allowing
for compatibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D31-D0
float. No data is read at the end of the first interrupt ac-
knowledge cycle. At the end of the second interrupt
acknowledge cycle, the Am386DXL microprocessor will
read an external interrupt vector from D7-DO0 of the data
bus. The vector indicates the specific interrupt number
(from 0-255) requiring service.

Halt indication Cycie

The Am386DXL microprocessor halts as a result of
executing a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed. The
halt indication cycle is identified by the state of the bus
definition signals shown in Bus cycle Definition and a
byte address of 2. BEO and BEZ are the only signals
distinguishing halt indication from shutdown indication,
that drives an address of 0. During the halt cycle
undefined data is driven on D31-D0. The halt indication
cycle must be acknowledged by READY asserted.

A halted Am386DXL CPU resumes execution when
INTR (if interrupts are enabled) or NMI or RESET is
asserted.

Shutdown Indication Cycile

The Am386DXL microprocessor shuts down as a result
of a protection fault while attempting to process adou ble
fault. Signaling its entrance into the shutdown state, a
shutdown indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus defini-
tion signals shown in Bus Cycle Definition and abyte ad-
dress of 0. BEO and BE2 are the only signais distinguish-
ing shutdown indication from halt indication, which
drives an address of 2. During the shutdown cycle unde-
fined data is driven on D31-D0. The shutdown indica-
tion cycle must be acknowledged by READY asserted.

A shutdown Am386DXL microprocessor resumes exe-
cution when NMI or RESET is asserted.

Am386DXL Microprocessor

1-287

Copyrighted By Its Respective Mnufacturer

n AMD

A transfer requiring two
cycles on 16-bit data bus
A

-~ =~
Previous Cycle 1 Cycle 1A Cycle 2
Cycle Pipelined Non-Pipelined Non-Pipelined
(Write —_— Write) (Read)
Part One Part Two
T2P T1P T2 T2 T1 T2 T2 T1 T2 T2P
cve [MU U U Uy Uy U u oy
(CLK) I: _/__/—_/_\/—_/—\f_/__/—_/—v«
Always
BET-BEo [| Valid 1 Negated During Valid 2 Valid 3
[—X = Part Two
BES-BEZ, _ _|
A31-A2 “ Valid 1 »> Valid 2 Valid 3
Mmoé[—x
wWR [/
ws[N__Y/ - N
> Note: NA must be negated in these Ts to allow
recognition of asserted BST6 in final T2s.
\ l
NA [Don’t Care, Don'’t Care
4 4 32-Bit
Bus Size
BST6 [-
v J
186-Bit 16-Bit
Bus Size Bus Size
RERDY [e _YL__W_YA_
[ock [C Valid 1 — Valid 2
d15-do d15_—d0 I d31l—d16 d15—do
D15-Do [—f-— - Out X Out —+———- -——(El
1
d31-d16 ld31—d16I d31-d16
D31-D16 [—|-— < Out Out) S — | _
i] [] I I
Key: Dn = Physical data pin n Cycle 1 is pipelined. Cycle 1A cannot be pipelined, but its address can be inferred from
dn = Logical data pin n that of Cycle 1, o externally simulate address pipelining during Cycle 1A.
15021B-063
Figure 60. Using NA and BS16
1-288 Am386DXL Microprocessor

This Materi al

Copyrighted By Its Respective Mnufacturer

Previous Interrupt Idle interrupt Idie
Cycle Acknowledge (4 Bus States) Acknowledge
Cycle 1 Cycle 2
T2 T T2 T2 Ti Ti Ti Ti T1 T2 Tai Ti
cvee [[U U UYUL gEREREREupEgERs
e[NSNS NS NSNS N NS NS NS
BE3-BET [
A
BES
@1—5& 4
M0, D/C,
WR
a2 [
//
TOCK [
wos [/ /
W [
B516 [Ignored X
READY [Ko\
Ignored Vector
p7-p0 [-F———F———————O——F—— =+
Ignored Ignored
05108 [===~ TP

Interrupt Vector (0-255) is read on D7-DO at end of second Interrupt Acknowledge bus (ﬁyfle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting has no practical effect. Choose the
approach that is simplest for your system hardware design.

15021B-064

Figure 61. Interrupt Acknowledge Cycles

Am386DXL Microprocessor 1-289

This Material Copyrighted By Its Respective Manufacturer

a AMD

CLK2

(CLK)

BE3, BET,
BED, MAO,

BEZ,
A31-A2,
W/R, DT

ADS

D31-Do

Cycle 1
Non-Pipelined
(Write)

T2

sihLGin!
NN

Cycle 1A
Non-Pipelined
(Halt)

2

Tt

Idle

L Valid 1

L Valid 1

BEZ is Low
for Hait Cycle

I AN 7 N

Ti Ti

Am386DXL CPU remains
halted until INTR, NMI, or
RESET is asserted.

Am386DXL CPU responds
to HOLD input while in the
Halt state.

ignored

—

y
Note: Halt cycle must be
acknowledged by READY
asserted. Wait states may
be added to the cycle if
desired.

L]

[Valid 1

Valid 2

Out 1

[OutX

X Undefined

o — — —

D (Toating) e

Figure 62. Halt Indication Cycle

15021B-065

1-290

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

CLK2

(CLK)

BE3-BET
M0, WR

BED,
A31-A2,
DiC

ADS

BS16

READY

D31-Do

Cycle 1 Cycle 2
Pipelined Pipelined
(Read) {Shutdown)
TP T2P TP T24

Y uy
N\ NS NS

Ti

Idle

Ti Ti

Am386DXL CPU remains

shutdown until NMI or
RESET is asserted.

Valid 1
BEOG is Low
for Shutdown
Cycle
Valid 1

Am386DXL CPU responds
to HOLD input while in the
— Shutdown state.

Valid 1 Valid 2

Note: Shutdown cycle must

be acknowledged by READY
asserted. Wait states may be
added to the cycle if desired.

---«{In1)- L Undefined >—(F|Ioating)————-—-—-———

Figure 63. Shutdown Indication Cycle

15021B-066

This Materi al

Am386DXL Microprocessor

1-291

Copyrighted By Its Respective Mnufacturer

n AMD

Other Functional Descriptions

Entering and Exiting Hold Acknowledge

The Bus Hold Acknowledge State, Th, is entered in
response to the HOLD input being asserted. In the
Bus Hold Acknowledge state, the Am386DXL micropro-
cessor floats all output or bi-directional signals, except
for HLDA. HLDA is asserted as long as the Am386DXL

CPU remains in the bus hold acknowledge state. In the
Bus Hold Acknowledge state, all inputs except HOLD,
FLT, RESET, BUSY, ERROR, and PEREQ are ignored
(also up to one rising edge on NM! is remembered for
processing when HOLD is no longer asserted).

Idle

Hold
4— Acknowledge —

Vs Vs

ldle

Y § B

SN N_/"| N_/"|
Hoto [| K
HLDA [
BE3-BED,
A31_376,MV/VTI6ﬁ I: ——- (Floating ———- X)
ADS [N (Floating) - ——— 4
L

s [X

ﬁm[

LOC [m*——-]wloaﬂng)l——-——m

D31-D0 [—f——~}———(Floating) - — ——|— — —

Note: For maximum design flexibility the Am386DXL CPU has no internal puilup resistors on its outputs. Your design may
require an external pullup on ADS and other Am386DXL CPU outputs to keep them negated during float periods.

150218-067

Figure 64. Requesting Hold from Idle Bus

1-292 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

This Materi al

AMD n

Thmay be entered from a bus idle state, as in Figure 64,
or after the acknowledgment of the current physical bus
cycleifthe LOCK signal is not asserted, as in Figures 65
and 66. If HOLD is asserted during a locked bus cycle,
the Am386DXL microprocessor may execute one un-
locked bus cycle before acknowledging HOLD. If assert-
ing BST6 requires a second 16-bit bus cycle to complete
a physical operand transfer, it is performed before
HOLD is acknowledged, although the bus state dia-
grams in Figures 53 and 59 do not indicate that detail.

Th is exited in response to the HOLD input being ne-
gated. The following state will be Ti as in Figure 64 if no
bus request is pending. The following bus state will be
T1 if abus request is internally pending, as in Figures 65
and 66.

This also exited in response to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI input
while in Th, the event is remembered as a non-mask-
able interrupt 2 and is serviced when This exited, unless
of course, the Am386DXL microprocessor is reset be-
fore Th is exited.

RESET During HOLD Acknowledge

RESET being asserted takes priority over HOLD being
asserted. Therefore, Th is exited in response to the
RESET input being asserted. If RESET is asserted
while HOLD remains asserted, the Am386DXL micro-
processor drives its pins to defined states during reset,
as in Table 15 Pin State During RESET, and performs
internal reset activity as usual.

If HOLD remains asserted when RESET is negated, the
Am386DXL microprocessor enters the hold acknowl-
edge state before performing its first bus cycle, provided
HOLD is still asserted when the Am386DXL micropro-
cessor would otherwise perform its first bus cycle. If
HOLD remains asserted when RESET is negated, the
BUSY input is still sampled as usual to determine
whether a self test is being requested, and ERRORis still
sampled as usual to determine whether a 387DX math
coprocessor versus an 80287 (or none) is present.

Float

Activating the FLT input fioats all Am386DXL CPU
bi-directional and output signals, including HLDA. As-
serting FLT isolates the Am386DXL CPU from the
surrounding circuitry.

As the Am386DXL microprocessor is packaged in a sur-
face mount PQFP, it cannot be removed from the mo-
therboard when In-Circuit Emulation (ICE) is needed.
The FLT input allows the Am386DXL CPU to be electri-
cally isolated from the surrounding circuitry. This allows
connection of an emulator to the Am386DXL micropro-
cessor PQFP without removing it from the PCB. This
method of emulation is referred to as ON-Circuit Emula-
tion (ONCE).

Entering and Exiting Float

FLT is an asynchronous, active Low input. It is recog-
nized on the rising edge of CLK2. When recognized, it
aborts the current bus cycle and floats the outputs of the
Am386DXL microprocessor (Figure 68). FLT must be
held Low for a minimum of 16-CLK2 cycles. Reset
should be asserted and held asserted until after FLT is
deasserted. This will ensure that the Am386DXL CPU
will exit Float in a valid state.

Asserting the FLT input unconditionally aborts the cur-
rent bus cycle and forces the Am386DXL microproces-
sor into the Float mode. Since activating FLT uncondi-
tionally forces the Am386DXL CPU into Float mode, the
Am386DXL CPU is not guaranteed to enter Float in a
valid state. After deactivating FLT, the Am386DXL CPU
is not guaraneeted to exit Float mode in a valid state.
This is not a problem, as the FLT pinis meant to be used
only during ONCE. After exiting Float, the Am386DXL
CPU must be reset to return it to a valid state. Reset
should be asserted before FLT is deasserted. This will
ensure that the Am386DXL CPU will exist Float in a valid
state.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

Bus Activity During and Following Reset

RESET is the highest priority input signal capable of in-
terrupting any processor activity when it is asserted. A
bus cycle in progress can be aborted at any stage; or
idle states or bus hold acknowledge states discontinued
so that the RESET state is established.

RESET should remain asserted for at least 15-CLK2
periods to ensure it is recognized throughout the
Am386DXL microprocessor, and at least 80-CLK2 peri-
ods if Am386DXL device self-test is going to be re-
quested atthe falling edge. RESET asserted pulsesless
than 15-CLK2 periods may not be recognized. RESET
pulses less than 80-CLK2 periods followed by a self-test
may cause the self-test to report a failure when no true
failure exists.

Am386DXL Microprocessor

1-293

Copyrighted By Its Respective Mnufacturer

This Materia

a AMD

The additional RESET pulse width is required to clear
additional state prior to valid self-test.

Provided the RESET falling edge meets setup and hold
times, 125 and t26, the internal processor clock phase is
defined at that time, as illustrated by Figure 67.

An Am386DXL microprocessor self-test may be re-
quested at the time RESET is negated by having the
BUSY input at a Low level, as shown in Figure 67. The
self-test requires (2%°) + approximately 60-CLK2 periods
to complete. The self-test duration is not affected by the
testresults. Evenif the self-test indicates a problem, the
Am386DXL device attempts to proceed with the reset
sequence afterward.

After the RESET falling edge (and after the self-test if
it was requested) the Am386DXL microprocessor per-
forms an internal initialization sequence for approxi-
mately 350- to 450-CLK2 periods.

The Am386DXL microprocessor samples its ERROR in-
put some time after the falling edge of RESET and be-
fore executing the first ESC instruction. During this sam-
pling period BUSY must be High. if ERROR was sam-
pled active, the Am386DXL device employs the 32-bit
protocol of a 387DX math coprocessor. Even though
this protocol was selected, it is still necessary to use a
software recognition test to determine the presence or
identity of the coprocessor and to assure compatibility
with future processors.

1-294

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

CLK2
(CLK)

HOLD

HLDA

BE3-BED, A31 -A%
M/IO, D/IC, W,

>
72

D

3

?,l
o

™M Mmoo e m 1

OCK

pa1-Do [

(5

Cycle 1

(Read)

T2

Non-Pipelined

L L
N |

ainigigh
N |

Hold
Acknowledge

Th

pigi
N N |
N

Non-Pipelined

N N

Cycle 2

(Write)

HOLD asserted no later

than READY asserted

] (Floating)

> vaai | | D>------ e Valid 2
— / (Floating)

\ Ncemmmecpenm——m—- /

32-Bit Bus Size
i

Note: If asserting BS16

requires a second bus

cycle to be performed, the

second cycle is performed

before Hold Acknowledge.

1
(Negated, or Last Locked Cycle)
- . (Floating) .
Valid 1 R i Valid 2
Floatin Floatin
| L S >

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and 124) requirements
are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 65. Requesting Hold from Active Bus (NA Negated)

15021B-068

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-295

Lo

CLK2
(CLK)

HOLD

HLDA

BE3-BED, A31-A2,
M/IO, D/C, W/R

ADS

3

[O e AR v IR vt S s I o IR s B o | M r— m

BS16

READY

LOCK

D31-DO

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (123 and t24) requirements

TP

s

Cycle 1
Pipelined
(Write)

T21 T2I

JEpEpEgE
N N]

Hold
Acknowledge

Th Th

_ state as NA asserted

HOLD asserted in same bus

pigigipiginliginl
N N N N

Cycle 2
Non-Pipelined
(Read)

T

(Floating)
Valid] 1 DX XX XX XX X D> ----~- r -------- K Valid 2
(Floating)
i N I B e . %
)4
(Negated or Last Locked Cycle)
Floatini
Valid 1 oo g K Valid 2
Floatin
ou X out > e L -

are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 66. Requesting Hold from Active Bus (NA Asserted)

15021B-069

Table 21. Component and Revision Identifier History

intel Am386DXL Com
ponent Revislon
1386 Microprocessor Identifier Identifier
Stepping Name Revision
Do B 03 05

1-296

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

CLK2

Reset

CLK (Internal)

BE3-BEG, WR
M/O, HLDA

A31-A2,
D/C, LOCK

ADS

o
2
=]

b
o
0
<

D31-DO

[_V

[

L

L
[

L

WL

[
[
L

<4—— Reset
> 15 CLK2 duration if not
going 1o request self-test.

> 80 CLK2 duration before
requesting self-test.

[YLy

>l < Internal

(

1 2 3

X XXX

initialization

If self-test is performed, add
(22)+ 60* to these numbers

17

gEpigipupipupipl pipipi s

Cycle 1
Non-Pipelined
(Read)

T1 T2

-

395 39; 398
UL

Approximately

18 [19 [{395

lo2]etfe2

XX XXX S

No self-test

(Note 1)

o1]02

N\

o1lfe 2[o1]02

/NN

Negated to allow sensing of a

387DX math coprocessor

i

Low to begin self-test (Note 2)

Asserted to indicate 387DX
math coprocessor protocol

5 ﬂ

Up to 30 CLK2 —#]
Low || During Reset /()0000‘ Valid 1
Up to 30 CLK2 —™
High|{ During Reset \<>(XXX) Valid 1
Up to 30 CLK2 —™
High|| During Reset B \ /_
XXXXRXKEXXKN

XOOXXXXXXO

Notes: 1. BUSY should be held stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.
2. If self-test is requested, the Am386DXL microprocessor outputs remain in their reset state as shown here and in Table 14.

Figure 67. Bus Activity from Reset Until First Code Fetch

15021B-070

CLK2
FLT
Control
Data
Address

Reset

\ /
----------------------------- < XC
o S I < X
X Valid R R R R b 4). &
/
15022B-029
Figure 68. Entering and Exiting FLT

This Materi al

Am386DXL Microprocessor

1-297

Copyrighted By Its Respective Mnufacturer

This Materi al

n AMD

Self-Test Signature

Upon completion of self-test, (if self-test was requested
by hoiding BUSY Low at least eight CLK2 periods before
and after the falling edge of RESET), the EAX register
will contain a signature of 00000000h indicating the
Am386DXL CPU passed its self-test of microcode and
major PLA contents with no problems detected. The
passing signature in EAX, 00000000h, applies to all
Am386DXL microprocessor revision levels. Any non-
zero signature indicates the Am386DXL CPU unit is
faulty.

Component and Revision Identifiers

To assist Am386DXL microprocessor users, the micro-
processor after reset holds a component identifier and a
revision identifier in its DX register. The upper 8 bits of
DX hold 03h as identification of the Am386DXL CPU
component. The lower 8 bits of DX hold an 8-bit un-
signed binary number related to the component revision
level. The revision identifier begins chronologically with
a value zero and is subject to change (typically it will be
incremented) with component steppings intended to
have certainimprovements or distinctions from previous
steppings.

These features are intended to assist Am386DXL mi-
croprocessor users to a practical extent. However, the
revision identifier value is not guaranteed to change with
every stepping revision nor to follow a completely uni-
form numerical sequence, depending on the type or in-
tention of revision or manufacturing materials required
to be changed.

Coprocessor Interfacing

The Am386DXL microprocessor provides an automatic
interface for a 387DX floating-point math coprocessor.
A 387DX math coprocessor uses an I/O-mapped inter-
face driven automatically by the Am386DXL micropro-
cessor and assisted by three dedicated signals: BUSY,
ERROR, and PEREQ.

As the Am386DXL CPU begins supporting a coproces-
sor instruction, it tests the BUSY and ERROR signals to
determine if the coprocessor can accept its next instruc-
tion. Thus, the BUSY and ERROR inputs eliminate the
need for any preamble bus cycles for communication
between processor and coprocessor. A 387DX math
coprocessor can be given its command op-code imme-
diately. The dedicated signals provide instruction syn-
chronization, and eliminate the need of using the
Am386DXL CPU WAIT op-code (9Bh) for 387DX math
coprocessor instruction synchronization (the WAIT op-
code was required when 8086 or 8088 was used with
the 8087 coprocessor).

Custom coprocessors can be included in Am386DXL
microprocessor based systems, via memory-mapped or
1/0-mapped interfaces. Such coprocessor interfaces al-
low a completely custom protocol, and are not limited to
a set of coprocessor protocol primitives. Instead, mem-
ory-mapped or I/O-mapped interfaces may use all appli-
cable Am386DXL microprocessor instructions for high-
speed coprocessor communication. The BUSY and
ERROR inputs of the Am386DXL CPU may also be used
for the custom coprocessor interface, if such hardware
assist is desired. These signals can be tested by the
Am386DXL CPU WAIT op-code (9Bh). The WAIT in-
struction will wait until the BUSY input is negated (inter-
ruptable by an NMI or enable INTR input), but generates
an Exception 16 fault if the ERROR pinis in the asserted
state when the BUSY goes (or is) negated. If the custom
coprocessor interface is memory-mapped, protection of
the addresses used for the interface can be provided
with the Am386DXL microprocessor on-chip paging or
segmentation mechanisms. If the custom interface is I/
O-mapped, protection of the interface can be provided
withthe Am386D XL microprocessor IOPL (I/0 Privilege
Level) mechanism.

A 387DX math coprocessor interface is O mapped as
shown in Table 22. Note that a 387DX math coproces-
sorinterface addresses are beyond the OhFFFFh range
for programmed /0. When the Am386DXL CPU sup-
ports a 387DX math coprocessor, the Am386DXL mi-
croprocessor automatically generates bus cycles to the
coprocessor interface addresses.

Table 22. Math Coprocessor Port Addresses

Address in Am386DXL 387DX
CPU VO Space Coprocessor Register
Opcode Register
800000F8h (32-bit port)
Operand Register
800000FCh (32-bit port)

To correctly map a 387DX math coprocessor registers
to the appropriate I/O addresses, connect a 387DX
math coprocessor CMDO pin directly to the A2 output of
the Am386DXL microprocessor.

Software Testing for Coprocessor Presence

When software is used to test for coprocessor (387DX)
presence, it shouid use only the following coprocessor
op-codes: FINIT, FNINIT, FSTCW mem, FSTSW mem,
FSTSW AX. To use other coprocessor op-codes when a
coprocessor is known to be not present, first set EM = 1
in Am386DXL microprocessor CRO.

1-298

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

ABSOLUTE MAXIMUM RATINGS

Storage Temperature —-65°C to +150°C Stresses above those listed under ABSOLUTE MAXIMUM
Ambient Temperature Under Bias . . —65°C to +125°C RATINGS may cause permanent device failure. Functionality
. at or above these limits is not implied. Exposure to Absolute
Sl:g Q}LVoltage with Respect —05Vio+7V Maximum Ratings for extended periods may affect device
........................ . reliability.
Voltage on Other Pins —-0.5Vto Vec +0.5V 4

DC CHARACTERISTICS over COMMERCIAL operating ranges

Vee=5 V +5%; Tcase = 0°C to +85°C (PGA)
Vee =5 V+10%; Tease = 0°C to +100°C (PQFP)

Parameter
Symbol Description Notes Min Max Unit
' Input Low Voltage (Note 1) -0.3 0.8 \
Vi Input High Voltage 2.0 Vee+0.3 \"
Vie CLK2 Input Low Voltage (Note 1) -0.3 0.8 \
Ve CLK2 Input High Voltage
20 MHz Ve—0.8 Ve +0.3 '
25, 33, and 40 MHz 3.7 Vee+0.3 \'
Voo Output Low Voltage
1o, =4 mA: A31-A2, D31-D0O 0.45 A
lo. =5 mA: BE3-BEG, W/R, 0.45 v
D/C, MAiO, LOCK, ADS, HLDA
Vou Output High Voltage
lou=1 MA: A31-A2, D31-DO 24 \;
low=0.9 mA: BE3-BED, 24 v
W/R, D/C, WiO, LOCK,
ADS, HLDA
Iy Input Leakage Current o0V<V, <V +15 A
(All pins except BS16, PEREQ,
BUSY, FLT and ERROR)
bt Input Leakage Current V=24V 200 HA
(PEREQ Pin) {Note 2)
le Input Leakage Current V, =0.45 —400 HA
(BS76, BUSY, FLT, and ERROR) (Note 3)
o Output Leakage Current 0.45V<Vour<Vee +15 A
lee Supply Current (Note 4)
CLK2 =40 MHz: with —20 lec Typ=165 200 mA
CLK2 =50 MHz: with =25 lec Typ=210 250 mA
CLK2 =66 MHz: with -33 lec Typ=275 330 mA
CLK2 = 80 MHz: with —40 lec Typ=330 400 mA
lecsa Standby Current lecss Typ=0.02 mA
{Note 5) 150 HA
Cwn Input or VO Capacitance F.=1 MHz (Note 4) 10 pF
Cour Output Capacitance F.=1 MHz (Note 4) 12 pF
Ceowx CLK2 Capacitance F.=1 MHz (Note 4) 20 pF

Notes: 1. The Min value, —0.3, is not 100% tested.
2. PEREQ input has an internal pulidown resistor.

3.
4. Not 100% tested.
5

. FLT, and

inputs each have an internal pullup resistor.

" Measurement taken with inputs at rails, outputs unloaded, BS16, BUSY, FLT, and ERFOR at Vcc voltage level, PEREQ at Gnd.

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-299

n AMD

SWITCHING CHARACTERISTICS over operating range
Vee =5V £5%; Tease = 0°C to +85°C

Parameter Ref 40 MHz 40 MHz
No. | Description Notes Figure Min Max Unit
Operating Frequency Half of CLK2 Freq 0 40 MHz
1 CLK2 Period 71 12.5 ns
2a CLK2 High Time at2v 71 5 ns
2b CLK2 High Time at3.7Vv 71 3.25 ns
3a CLK2 Low Time at2Vv 71 5 ns
3b CLK2 Low Time at0.8 VvV 71 3.25 ns
4 CLK2 Fall Time 3.7Vto 08V
(Note 3) 71 4 ns
5 CLK2 Rise Time 0.8Vto3.7V
(Note 3) 71 4 ns

6 A31-A2 Valid Delay C, =50 pF 70, 73, 81 4 13 ns
7 A31-A2 Float Delay (Note 1) 81 4 20 ns
8 BE3-BEOG, LOCK Valid Delay C, =50 pF 70, 73, 81 4 13 ns
9 BE3-BED, LOCK Float Delay (Note 1) 81 4 20 ns
10 W/R, MO, D/C Valid Delay C, =50 pF 70, 73, 81 4 13 ns
10a | ADS Valid Delay C, =50 pF 70, 73, 81 4 13 ns
11 W/R, MO, D/C, ADS Float Delay | (Note 1) 81 4 20 ns
12 D31-D0 Write Data Valid Delay C_=50 pF (Note 4) 70, 74, 81 7 18 ns
12a | D31-DO Write Data Hold Time C, =50 pF 70, 75 2 ns
13 D31-DO Float Delay (Note 1) 81 4 17 ns
14 HLDA Valid Delay C_ =50 pF 70, 81 4 17 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 2 ns
17 BS16 Setup Time 72 5 ns
18 BS16 Hold Time 72 2 ns
19 READY Setup Time 72 7 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 4 ns
22 D31-D0 Read Hold Time 72 3 ns
23 HOLD Setup Time 72 4 ns
24 HOLD Hold Time 72 2 ns
25 RESET Setup Time 82 4 ns
26 RESET Hold Time 82 2 ns
27 NMI, INTR Setup Time (Note 2) 72 5 ns
28 NMLI, INTR Hold Time (Note 2) 72 5 ns
29 PEREQ, ERROR, BUSY Setup Time| (Note 2) 72 5 ns
30 PEREQ, ERROR, BUSY Hold Time | (Note 2) 72 4 ns
Notes: 1. Float condition occurs when maximum output current becomes less than I, in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure

recognition within a specific clock period.
3. Rise and fall imes are not tested.
4. Min time not 100% tested.
1-300 Am386DXL Microprocessor

This Materi al

Copyrighted By Its Respective Mnufacturer

AMD n

SWITCHING CHARACTERISTICS over operating range

Vec=5 V +5%; Tcase = 0°C to +85°C

Parameter Ref 33 MHz 33 MHz
No. | Description Notes Figures Min Max Unit
Operating Frequency Half of CLK2 Freq 0 333 MHz

1 CLK2 Period 71 15.0 ns
2a CLK2 High Time at2Vv 7 6.25 ns
2b CLK2 High Time at3.7Vv 71 45 ns
3a CLK2 Low Time at2Vv 71 6.25 ns
3b CLK2 Low Time at0.8V 71 4.5 ns
4 CLK2 Fall Time 3.7Vtc08V

(Note 3) 71 4 ns
5 CLK2 Rise Time 08Vto37V

(Note 3) 71 4 ns
6 A31-A2 Valid Delay C_=50pF 70,73, 81 4 15 ns
7 A31-A2 Float Delay (Note 1) 81 4 20 ns
8 BE3-BEO, LOCK Valid Delay C, =50 pF 70, 73, 81 4 15 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 ns
10 W/R, MAO, D/C Valid Delay C, =50 pF 70, 73, 81 4 15 ns
10a | ADS Valid Delay C,_=50 pF 70, 73, 81 4 14.5 ns
1 W/R, MO, D/C, ADS Float Delay (Note 1) 81 4 20 ns
12 D31-D0 Write Data Valid Delay C,_ =50 pF (Note 4) 70, 74, 81 7 24 ns
12a | D31-D0 Write Data Hold Time C =50 pF 70, 75 2 ns
13 D31-D0 Float Delay (Note 1) 81 4 17 ns
14 HLDA Valid Delay C, =50 pF 70, 81 4 20 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 2 ns
17 BS16 Setup Time 72 5 ns
18 BS16 Hold Time 72 2 ns
19 READY Setup Time 72 7 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 5 ns
22 D31-D0 Read Hold Time 72 3 ns
23 HOLD Setup Time 72 1 ns
24 HOLD Hold Time 72 2 ns
25 RESET Setup Time 82 5 ns
26 RESET Hold Time 82 2 ns
27 NMI, INTR Setup Time (Note 2) 72 5 ns
28 NMI, INTR Hold Time (Note 2) 72 5 ns
29 PEREQ, ERROR, BUSY Setup Time| (Note 2) 72 5 ns
30 | PEREQ, ERROR, BUSY Hold Time | (Note 2) 72 4 ns

Notes: 1. Float condition occurs when maximum output current becomes less than l,o in magnitude. Float delay is not 100% tested.
. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific CLK2 period.

2
3. Rise and fall times are not tested.
4. Min time not 100% tested.

Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

1-301

:‘ AMD

SWITCHING CHARACTERISTICS over operating range
Vec=5 V 5; Tease = 0°C to +85°C (PGA)
Vee =5 V £10%; Tease = 0°C to +100°C (PQFP)

Parameter Ref 25 MHz 25 MHz
No. | Description Notes Figures Min Max Unit
Operating Frequency Half of CLK2 Freq 0 25 MHz
1 CLK2 Period 71 20 ns
2a CLK2 High Time at2Vv 71 7 ns
2b CLK2 High Time at3.7Vv 71 4 ns
3a CLK2 Low Time at2Vv 71 7 ns
3b CLK2 Low Time ato8Vv 71 5 ns
4 CLK2 Fall Time 37Vto08V
(Note 3) 71 7 ns
5 CLK2 Rise Time 0.8Vt 3.7V
(Note 3) 71 7 ns
6 A31-A2 Valid Delay C, =50 pF 70, 73, 81 4 21 ns
7 A31-A2 Float Delay (Note 1) 81 4 30 ns
8 BE3-BED Valid Delay C, =50 pF 70, 73, 81 4 24 ns
8a LOCK Valid Delay CL =50 pF 70, 73, 81 4 21 ns
9 BES-BEO, LOCK Float Delay {Note 1) 81 4 30 ns
10 W/R, M/IO, D/C, ADS
Valid Delay C, =50 pF 70, 73, 81 4 21 ns
1 W/R, MAO, D/C, ADS
Float Delay (Note 1) 81 4 30 ns
12 D31-D0 Write Data Valid Delay C_ =50 pF 70,74, 81 7 27 ns
12a D31-D0 Write Data Hold Time C, =50 pF 70, 81 2 ns
13 D31-DO Float Delay (Note 1) 81 4 22 ns
14 HLDA Valid Delay C, =50 pF 70, 81 4 22 ns
15 NA Setup Time 72 7 ns
16 NA Hold Time 72 3 ns
17 BS16 Setup Time 72 7 ns
18 | BST6 Hold Time 72 3 ns
19 READY Setup Time 72 9 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 7 ns
22 D31-D0 Read Hold Time 72 5 ns
23 HOLD Setup Time 72 15 ns
24 HOLD Hold Time 72 3 ns
25 RESET Setup Time 82 10 ns
26 RESET Hold Time 82 3 ns
27 NMI, INTR Setup Time (Note 2) 72 6 ns
28 NMI, INTR Hold Time (Note 2) 72 6 ns
29 PEREQ, ERROR, BUSY, FLT
|_Setup Time (Note 2) 72 6 ns
30 PEREQ, ERROR, BUSY, FL.T
Hold Time {Note 2) 72 5 ns

Notes: 1. Float condition occurs when maximum output current becomes less than lo magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific CLK2 period.
3. Rise and fall times are not tested.

1-302 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

SWITCHING CHARACTERISTICS over operating range
Voo =5 V +5%,; Tease = 0°C to +85°C (PGA)
Voo =5 V +10%; Tease = 0°C to +100°C (PQFP)

Parameter Ref 20 MHz 20 MHz
No. | Description Notes Figures Min Max Unit

Operating Frequency Half of CLK2 Freq 0 20 MHz
1 CLK2 Period 71 25 ns
2a CLK2 High Time at2Vv 71 8 ns
2b CLK2 High Time at (V.—0.8 V) 7 5 ns
3a CLK2 Low Time at2v 71 8 ns
3b CLK2 Low Time at08Vv 7 8 ns
4 CLK2 Fall Time (V..—0.8V)to 0.8V

(Note 3) 71 8 ns
5 CLK2 Rise Time 0.8 Vio (V,.—0.8V)
{Note 3) 71 8 ns

6 A31-A2 Valid Delay C, =120 pF 70, 73, 81 4 30 ns
7 A31-A2 Float Delay (Note 1) 81 4 32 ns
8 BE3-BEOC Valid Delay C =75 pF 70, 73, 81 4 30 ns
9 BE3-BED, LOCK

Float Delay (Note 1) 81 4 32 ns
10 W/R, M/I0, D/C, ADS

Valid Delay C. =75 pF 70, 73, 81 4 28 ns
11 W/R, MO, D/C, ADS

Float Delay (Note 1) 81 4 30 ns
12 D31-D0 Write Data Valid Delay C_ =120 pF 70, 74, 81 4 38 ns
13 D31-DO Float Delay (Note 1) 81 4 27 ns
14 HLDA Valid Delay C =75pF 70, 81 6 28 ns
15 NA Setup Time 72 9 ns
16 NA Hold Time 72 14 ns
17 BS16 Setup Time 72 13 ns
18 | BST6 Hold Time 72 21 ns
19 READY Setup Time 72 12 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 11 ns
22 D31-D0 Read Hold Time 72 6 ns
23 HOLD Setup Time 72 17 ns
24 HOLD Hold Time 72 5 ns
25 RESET Setup Time 82 12 ns
26 RESET Hold Time 82 4 ns
27 NMI, INTR Setup Time (Note 2) 72 16 ns
28 NMI, INTR Hold Time (Note 2) 72 16 ns
29 PEREQ, ERROR, BUSY, FLT

Setup Time {Note 2) 72 14 ns
30 PEREQ, ERROR, BUSY, FLT

Hold Time (Note 2) 72 5 ns

Notes: 1. Float condition occurs when maximum output current becomes less than I, magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific CLK2 period.

3. Rise and fall times are not tested.

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

1-303

n AMD

SWITCHING WAVEFORMS

The switching characteristics consist of output delays,
input setup requirements, and input hold requirements.
All characteristics are relative to the CLK2 rising edge
crossing the 2.0 V level.

Switching characteristic measurement is defined by
Figure 69. Inputs must be driven to the voltage levels in-
dicated by this diagram. Am386DXL CPU output delays
are specified with minimum and maximum limits meas-
ured as shown. The minimum Am386DXL microproces-
sor delay times are hold times provided to external cir-
cuitry. Am386 DXL microprocessor input setup and hold
time are specified as minimums, defining the smaliest

acceptable sampling window. Within the sampling win-
dow, a synchronous input signal must be stable for cor-
rect Am386D XL microprocessor operation.

Outputs ADS, W/R, D/C, M/i0, LOCK, BE3-BED,
A31-A2, and HLDA only change at the beginning of
phase one. D31-D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ, FLT, and D31-D0 (read cycles) inputs
are sampled at the beginning of phase one. The NA,
BS16, INTR, and NM! inputs are sampled at the begin-
ning of phase two.

—
Outpms @ - I Min _;Max
(A31-A2, DIC, Valid ' Valid
BE3-BEQ, outputn 15V 15V output n+1
ADS, /IO, WiR,
LOCK, HLDA)
————Q@)———»
i Max
Outputs Valid 15V Valid
(D31-0) Output -2 V¥ Output n+1
I Note |
_ Inputs sov /. . Valid ;
(NA, BSTS, U5 Vinput?-5V
INTR, NMI) oV 2 -
Inputs 30V | Note " l
(READY, HOLD,) ; \
FLT, ERROR, BUSY 1.5V a5y

Legend: A—Maximum Output Delay Spec
B—Minimum Output Delay Spec
C—Minimum Input Setup Spec
D—Minimum Input Hold Spec

Note: Input waveforms have tr < 2.0 ns from0.8 V1o 20 V.

oV -

150218071

Figure 69. Drive Levels and Measurement Points

1-304

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

Am386DXL CPU Output o———j‘
C,

(8

C. includes all parasitic capacitances.

150218-072

Figure 70. AC Test Load

- 1

122
t2b

V=08V | f—0 & ___Zl___]
CLK2 20V S —_— \
08V 4 4+———
t5 PR 14
< 132
Figure 71. CLK2 Timing 150218-073
Am386DXL Microprocessor 1-305

This Material Copyrighted By Its Respective Manufacturer

n AMD

CLK2

HOLD

D31-Do
(Inputs)

_BUSY
ERROR

INTR, NMI

123

129

130

1 t15

ti6

117

118

127

128

Tx

15021B-074

A31-A2

HLDA

mrm 1 1

62

18 t8a

Valid

t10 t10a

Valid

16

Min

Figure 73. Output Valid Delay Timing

15021B-075

1-306

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD a

T1
1 62

awe [7 N F F __
wi

2 Min, Max
D31-DO [---------------- --- < Valid n
15021B-076
Figure 74. Write Data Valid Delay Timing (25, 33, and 40 MHz)
T1
o1 62
we [_F A F _
wWR [
Min
t12a
D31-D0O [Valid n >
15021B-077
Flgure 75. Write Data Hold Timing (25, 33, 40 MHz)
T
o1 92
e [_7/__7[—__/—__
WAR [/
t12 Min, Max
D31-DO [Valid n Valid n+1
150218-078
Figure 76. Write Data Valid Delay Timing (20 MHz)
Am386DXL Microprocessor 1-307

This Material Copyrighted By Its Respective Manufacturer

n AMD

nom + 6 T | |

nom + 3 — —

nom
Output Valid Delay (ns)

nom -3

nom —6

nom -9 | l
50 75 100 125 150
C, (picofarads)

Note: This graph will not be linear outside of the C, range shown. 15021B-079

Figure 77. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL=120 pF)

nom + 9 |] |

nom + 6 p— —

nom+3
Output Valid Delay (ns)

nom

|
|
nom -3 |— : —
I
nom —6 | l |
75 100 125 150
C, (picofarads)
Note: This graph will not be linear outside of the C, range shown. 15021B-080

Figure 78. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL=75 pF)

1-308 Am386DXL. Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

| | |
nom + 9 [— -
nom + 6
Output Valid Delay (ns)

nom + 3

nom

m-~3 —
ne | | |

50 75 100 125 150

C, (picofarads)

Note: This graph will not be finear outside of the C. range shown.

15021B-081
Figure 79. Typical Output Valid Delay Versus Load Capacitance

at Maximum Operating Temperature (C. =50 pF)

Rise Time (ns) 0.8 V—-2.0V

8 | |]
50 75 100 125 150
C, (picofarads)

Note: This graph will not be linear outside of the C, range shown. 15021B-082

Figure 80. Typlcal Output Rise Time Versus Load Capacitance
at Maximum Operating Temperature

Am386DXL Microprocessor 1-309

This Material Copyrighted By Its Respective Manufacturer

n AMD

Th TiorT1
$2 %1 62 o1 62
CLka [l__7l—_7r—_7
o 19 Min Mta?(18a Min Max
BE3-BED, IR B A J DA .
LOCK (High Z)
t11 ti0t10a
WA MO Min Max Min Max
D/C, ADS (High2)
t7 >
Min Max 6 Min Max
A31-A2 — — 1 = |1 — —T —]
3 (High Z)
s Min Max 12 Min Max
D31-DO — — -(H_igh? —_— — — —
t13—Also applies to data float when write
cycle is followed by read or idle
t14
14 Min Max Min Max
HLDA
150218083
Figure 81. Output Float Delay and HLDA Valid Delay Timing
RESET Initialization Sequence _
$2o0rd1 d2o0rd1 62 o1
CLK2 [
126
RESET [N
t25
The second internal processor phase following RESET High-to-Low transition (provided t25 and t26 are met) is 2. 15021B-084

Figure 82. RESET Setup and Hold Timing and Internal Phase

1-310

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

This Materi al

AMD n

INSTRUCTION SET

This section describes the Am386DXL microprocessor
instruction set. A table lists all instructions along with in-
struction encoding diagrams and clock counts. Further
details of the instruction encoding are then provided in
the following sections, which completely describe the
encoding structure and the definition of all fields occur-
ring within Am386DXL CPU instructions.

Am386DXL Microprocessor Instruction
Encoding and Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 23, by
the processor clock period (e.g., 50 ns for a 20 MHz,
40 ns for a 25 MHz, 30 ns for a 33 MHz, and 25 nsfor a
40 MHz Am386DXL microprocessor).

For more detailed information on the encodings of
instructions refer to Section Instruction Encodings. Sec-
tion Instruction Encodings explains the general struc-
ture of instruction encodings and defines exactly the
encodings of all fields contained within the instruction.

Instruction Clock Count Assumptions

1. The instruction has been prefetched and decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No Exceptions are detected during instruction
execution.

5. If an effective address is calculated, it does not use
two general register components. One register,
scaling, and displacement can be used within the
clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand.

2. n=number of times repeated.

3. m = number of components in the next instruction
executed, where the entire displacement (if any)
counts as one component; the entire immediate data
(it any) counts as one component; and each of the
other bytes of the instruction and prefix(es) each
count as one component.

Am386DXL Microprocessor 1-311

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

Table 23. Am386DXL Microprocessor instruction Set Summary

Clock Count Comments
Resl Virtusl Real Virtual
Address Ads A
Instruction Format Mode Mode | Mode | Mode
GENERAL DATA TRANSFER
MOV =Move:
Register to Register/Memory 1000100w modreg «/m 22 22 b h
Register/Memory to Register 1000101w modreg r/m 24 24 b h
I diate to Reg /Memory 1100011w |mod000 mm |immediate data 22 272 b h
Immediate to Register (short form) 101 1wreg immediate data 2 2
Memory to Accumulator (short form) 1010000w full displacement 4 4 b h
Accumulator to Memory {short form) 1010001w full displacemnent 2 2 b h
Register/Memory to Segment Register| 10001110 mod sreg3 r/m 5 18,19 b hi,j
Segment Register to Register/Memory| 10001100 mod reg ¢/m 272 22 b h
MOVSX = Move with Sign Extension
Register from Register/Memory I 00001111 l 1011t11w l modreg ©m] 6 36 b h
MOVZX = Move with Zero Extension
Register from Register/Memory I 00001111 I 1011011w I modreg /m] 36 6 b h
PUSH = Push:
Register’Memory t1111111 mod110 m] 5 5 b h
Register (short form) 01010 reg 2 2 b h
Segment Register (ES,CS,SS,0rDS) { 000sreg2110 2 2 b h
Segment Register (FS or GS) 00001111 10&993007' 2 2 b h
Immediate 01101080 immediate data 2 2 b h
PUSHA = Push All 01100000 18 18 b h
POP =Pop
Register/Memory 10001111 {mod000 r/Tl 5 5 o h
Register (short form) 01011 reg 4 4 b h
Segment Register (ES, SS, or DS) 000sreg2111 7 21 b h.i, j
Segment Register (FS or GS) 00001111 10sreg3001 l 7 21 b hij
POPAzPop All 01100001 24 24 b h
XCHG = Exchange
Register/Memory with Register 1000011w modreg r/m I 3/5 3/5 b, f f.h
Register with Accumulator (shortform) | 10010 reg Ciock Count 3 3
IN=input from: ”m
Fixed Port 1110010w port number 026 12 6°/26**
Variable Port 1110110w 027 13 7°727**
OUT =Output to:
Fixed Port 1110011w port number 024 10 4%724** m
Variable Port 1110111w 025 11 54725°** m
LEA = Load EA to Register 10001101 modreg rim 2 2

“HCPL<IOPL **If CPL>IOPL

1-312

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

avp &

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
- Re v Reat 1 Virtual
instruction Format Mode Mode Mode | Mode
SEGMENT CONTROL
LDS = Load pointer to DS 11000101 modreg r/m 7 22 b h, i}
LES =Load pointer 1o ES 11000100 | modreg r/m 7 22 b h,i, j
LFS = Load pointer to FS 00001111 10110100 modreg /m 7 25 b h, i,
LGS =Load pointer to GS 00001111 10110101 modreg rim 7 25 b h i
LSS =Load pointer to SS 00001111 10110010 modreg rm 7 22 b h,ij
FLAG CONTROL
CLC =Clear Carry Flag 11111000 2 2
CLD = Clear Direction Flag 11111100 2 2
CLI=Clear Interrupt Enable Flag 11111010 8 8 m
CLTS =Clear Task Switched Flag 00001111 0000011(L] 6 6 c i
CMC = Complement Carry Flag 11110101 2 2
LAHF = Load AH into Flag 10011111 2 2
POPF = Pop Flag 10011101 5 5 b h.n
PUSHF = Push Flag 10011100 4 4 b h
SAHF = Store AH into Flag 10011110 3 3
STC = Set Carry Flag 11111001 2 2
STD = Set Direction Flag 11111101 2 2
STl=Set interrupt Enable Flag 11111011 8 8 m
ARITHMETIC
ADD=Add
Register to Register 000000dw mod reg rim 2 2
Register to Memory 0000000W mod reg r/m 7 7 b h
Memory 10 Register 0000001wW mod reg r/m 6 6 b h
diate to Register/M Y 100000sw mod000 m immediate data g 27 b h
Immediate to Accumulator (shortform) | 00000 10w | immediate data 2 2
ADC = Add with carry
Register 10 Register 000100dw | modreg r/m 2 2
Register to Memory 0001000w modreg r/m 7 7 b h
Memory to Register 0001001wW mod reg m 6 6 b h
Immediate to Register/Memory 100000sw | mod010 wm | immediate data 217 27 b h
Immediate to Accumulator (shostform) | 00010 10w | immediate data 2 2
INC =Increment
Register/Memory 11111 11w mod 000 r/ﬂ 2/6 26 b h
Register (short form) 01000 reg 2 2
SUB =Subtract
Register from Register 001010dw modreg rm 2 2
Register from Memory 0010100w modreg /m 7 7 b h
Memory from Register 0010101w modreg /m 6 6 b h
Am386DXL Microprocessor 1-313

This Material Copyrighted By Its Respective Manufacturer

a AMD

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)
Clock Count Comments

Protected Protected
Virtua! Resl Virtual

Instruction Format Mode Mode Mode | Mode
ARITHMETIC (continued)

Immediate from Register/Memory 001001t11w mod101 om | immediate data 27 27 b h
Immediate from Accumulator 00077T70wW imi late data 2 2

{short form)

SBB=Subtract with Borrow

Register from Register 000110dw modreg r/m 2 2

Register from Memory 0001100w modreg r'm 7 7 b h
Memory from Register 0001101w modreg «/m 6 6 b h
immediate from Register/Memory 100000sw mod011 rm immediate data 7 27 b h
Immediate from Accumutator 0001110w | immediate data 2 2

DEC =Decrement

Register/Memory 1111111w reg001 r/mj 26 2/6 b h
Register (short form) 01001 reg 2 2

CMP = Compare

Register with Register 001110dw modreg r/m 2 2

Memory with Register 0011100w modreg r/m 5 5 b h
Register with Memory 0011101w modreg r/m 6 6 b h
Immediate with Register/Memory 100000sw mod111 rm | immediate data 5 2/5 b h
Immediate with Accumulator(shortform)l 0011110w | immediate data 2 2

NEG =Change Sign 111101 1tw mod011 r/mj 26 26 b h
AAA = ASCI! Adjust for Add 00110111 4 4

DAA =Decimal Adjust for Add 00111111 4 4

AAS = ASCil Adjust for Subtract 00100111 4 4

DAS = Decimal Adjust for Subtract | 00101111 4 4

MUL = Multiply (Unsigned)

Accumulator with Register/Memory [1111011w] mod100 r/m]

Multiplier -Byte 12-17/15-20{12-17/15-20{ b,d dh
-Word 12-25/15-28 | 12-25/15-28 | b,d dh
-Doubleword 124171544 [12-41/15-44 | bd dh

IMUL = Integer Multiply (signed)

Accumulator with Register/Memory L 1111011w I mod101 rlm]

Muitiplier -Byte 12-17/15-20{12-17/15-20] b,d dh
-Word 12-25/15-28 [12-25/15-28 | b,d dh
-Doubleword 1241/15-44[12-41/1544 | bd dh

Register with Register/Memory I 00001111 I 10101111 l modreg rm 1

Muitiplier -Byte 12-17/15-20]12-17/15-20| b,d d,h
-Word 12-26/15-2812-25/15-28| b,d dh
-Doubleword 1241/15-44[1241/1544| b,d dh

Register/Memory with |

to Register I 011010s1 I modreg /m] immediate data_l
-Word 13-26/14-27|13-26/14-27| bd dh
-Doubleword 13-42/14-43]1342/1443] b,d dh

1-314 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Reat Virtust Resl Virtusl
instruction Format Mode Mode Mode | Mode
ARITHMETIC (continued)
DIV = Divide (Unsigned)
Accumulator by Register/Memory I 111101 1w ‘ mod110 rm
Divisor -Byte 14717 14117 b.e e, h
-Word 22/25 22/25 be e.h
-Doubleword 38/41 38/41 be e,h
IDIV = Integer Divide (Signed)
Accumulator by Register/Memory F1 110112 l modi11 ”ﬂ
Divisor -Byte 19/22 19/22 be e h
-Word 27/30 27130 be e h
-Doubleword 43/46 43/46 b.e e, h
AAD = ASCH Adjust for Divide 11010101 00001010 19 19
AAM = ASCIl Adjust for Multiply 11010100 00001010 17 17
CBW =Convert Byte to Word 10011000 3 3
CWD =Convert Word to 10011001 2 2
Double Word
LOGIC
Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
Register/Memory by 1 1101000w mod TTT om 377 a7 b h
Register/Memory by CL 1101001w mod TTT ¢m an 37 b h
Register Memory by Immediate Count[1100000w mod TTT vm | immediate 8-bit data 37 37 b h
Through Carry (RCL and RCR)
Register/Memory by 1 1101000w mod TTT rm 9/10 9/10 b h
Register/Memory by CL 1101001 w mod TTT o/m 9/10 910 b h
Register/M y by Immediate Count| 1100000w mod TTT ¢m immediate 8-bit data 9/10 9710 b h
T Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHUSAL
101 SHR
111 SAR
SHLD = Shift Left Double
Register/M y by | di 00001111 10100100 modreg r/m |inmediate 8-bit Jata a7 a7
Register/Memory by CL 00001111 10100101 modreg r/m 7 7
SHRD = Shift Right Double
Register/Memory by Immediate 00001111 10101100 modreg r/m |immediate 8-bit data 37 37
Register/Memory by CL 00001111 10101101 modreg rm a7 37
AND = And
Register 1o Register 001000dw mod reg rm 2 2
Register to Memory 0010000w mod reg rim 7 7 b h
Memory to Register 0010001w |modreg r/m 6 6 b h
immediate to Register/M« Y 1000000w mod110 rm | immediate data 217 7] h
Immediate to Accumutator (shontformj | 00100 10w | immediate data 2 2
TEST = And Function to Flags, no Result
Register/Memory and Register 1000010w modreg r/m 25 2/5 b h
[diate Data and Register/M y| 1111011w mod000 rm | immediate data 2/5 2/5 b h
Immediate Data and Accumuiator 1010100w immediate data 2 2
(short form)
Am386DXL Microprocessor 1-315

This Material Copyrighted By Its Respective Manufacturer

n AMD

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
R Virtual " Real X.I:(unl

Instruction Format Mode Mode | Mode | Mode
LOGIC (continued)
OR=0r
Register to Register 000010dw mod reg r/m 2 2
Register to Memory 0000100wW mod reg r'm 7 7 b h
Memory to Register 0000101w mod reg r/m 6 6 b h
Ir jate and R nory 1000000w mod001r/m immediate data 27 7 b h
Immediate to Accumulator (shortform) | 00001 10w immediate data 2 2
XOR =Exclusive or
Register to Register 001100dw mod reg r/m 2 2
Register to Memory 0011000w mod reg r/m 7 7 b h
Memory to Register 0011001w mod reg r/m 6 6 b h
Immediate to Register/Memory 1000000w mod110rm immediate data 217 7 b h
Immediate to Accumulator (shortform) | 0011010w | immediate data 2 2
NOT =Invert Register/Memory [1 111011w I mod 0 1 Or/mj 26 26 b h
STRING MANIPULATION Clock Count
CMPS = Compare Byte/Word 1010011w V%Beoss 10 10 b h
INS = input Byte/Wd from DX Port 0110110w | 290 15 94729** b h,m
LODS = Load Byte/Wd to AL/AX 1010110w 5 5 b h
MOVS = Move Byte/Word 1010010w 8 8 b h
OUTS = Output Byte/WdtoDXPort | 0110111w 280 14 8°/28** b h,m
SCAS = Scan Byte/Word 10101 11w 8 8 b h
STOS = Store Byte/Word from ALIAXEX | 1010101 w 5 s b h
XLAT =Translate String 11010111 5 5 h
REPEATED STRING MANIPULATION Repeated by Count in CX or ECX
REPE CMPS = Compare string

{Find Non-Match) 11110011 1010011w —I Clock Count 548n 5+9n b h
REPNE CMPS = Compare String Virtual 8086

(Find Match) 11110010 1010011w Mode 5+9n 5+9n b h
REPINS=InpulS|r|ng 11110010 0110110w | 28+6n0 14+6n 8+6n‘./’ b h.m
REP LODS = Load String 11110010 1010110w S5+6n 285:2: b h
REP MOVS =Move String 11110010 1010010w 8+4n 8+4n h
REP OUTS = Output String 11110010 01101 11w I 26 +5n0 12+5n 6¢5n:/' b h,m
REPE SCAS =Scan String 26450
(Find Non-AL/AX/EAX) L11110011 1010111w | 5+8n | S«80 | b h
REPNE SCAS = Store String
(Find ALUAX/EAX) 11110010 10101 11w 5+8n 5+9n b h
REP STOS = Store String 11110010 1010101w 5+5n 545n b h
BIT MANIPULATION
BSF=Scan Bit Forward 00001111 10111100 med reg r/m 114+3n 11+3n b h
BSR=Scan Bit Reverse 00001111 10111101 mod reg r/m 94+3n 9+3n b h

* HCPLSIOPL

¢ Clock count shown applies it ¥O permission allows /O to the port in Virtual 8086 Mode. if /O bit map denies

** K CPL > IOPL

permission, Exception 13 fauk occurs; refer 1o clock counts for INT 3 instruction.

1-316

This Materia

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

Table 23. Am386DXL Microprocessor instruction Set Summary (continued)

Clock Count Comments
Reat | virtuar | Reat | virtuai
Instruction Format Mode Mode | Mode | Mode
BIT MANIPULATION (continued)
BT =Test Bit
Register/Memory, Inmediate 00001111 10111010 mod 10 0 rm |immediate 8-bitdata | 36 36 b h
Register/Memory, Register 00001111 10100011 modreg r/m 312 312 b h
BTC = Test Bit and Complemeant
Register/Memory, Immediate 00001111 10111010 mod111 rm |immediate 8-bitdata { 6/8 6/8 b h
Register/Memory, Register 00001111 10111011 modreg r/m 6/13 6/13 b h
BTR=Test Bit and Reset
Register’/Memory, Immediate 00001111 10111010 mod110 rm |immediate 8-bitdata | 6/8 6/8 b h
Register/Memory, Register 00001111 10110011 modreg r/m 6/13 6/13 b h
BTS =Test Bit and Set
Register/Memory, iImmediate 00001111 10111010 mod 101 om |immediate 8-bitdata | 6/8 6/8 b h
Register/Memory, Register 00001111 10101011 modreg r/m 6/13 6/13 b h
CONTROL TRANSFER
CALL= Call
Direct Within Segment 11101000 full displacement 7+m 7+m b r
Register/Memory 11111111 mod010 ©om] 7+m 7+m b h,r
Indirect Within Segment 10+m 10+m
Direct Intersegment unsigned full offset, selector 17+ m 344+m b ik r
Protected Mode Only (Direct Intersegment)
Via Call Gate 1o Same Privilege Level 52+m h, ik, ¢
Via Call Gate to Different Privilege Leve!, (No Parameters) 86+m hj.k,r
Via Call Gate to Different Privilege Level, (x Parameters) 94+4x+m hikr
From 80286 Task to 80286 TSS 273 h,j k,r
From 80286 Task to Am386DXL CPU TSS 298 h .k, r
From 80286 Task to Virtual 8086 Task (Am386DXL CPU TSS) 218 hjkr
From Am386DXL CPU Task to 80286 TSS 273 hjkr
From Am386DXL CPU Task to Am386DXL CPUTSS 300 h.Kkr
From Am386DXL CPU Task to Virtual 8086 Task (Am386DXL CPU TSS) 218 hik,r
Indirect Intersegment F1 111111 I mod011 om l 2+m | 38+m | b hikr
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 56+ m h,j k. r
Via Call Gate to Different Privilege Level (No Parameters) 90+m hj k¢
Via Call Gate 10 Different Privilege Level (x Parameters) 98+4x+m h.j,k,r
From 80286 Task to 80286 TSS 278 hjkr
From 80286 Task to Am386DXL CPU TSS 303 hijkr
From 80286 Task to Virtual 8086 Task (Am386DXL CPU TSS) 222 h,i k, ¢
From Am386DXL CPU Task to 80286 TSS 278 h,j kr
From Am386DXL CPU Task to Am386DXL CPU TSS 305 h,j, Kk r
From Am386DXL CPU Task to Virtual 8086 Task (Am386DXL CPU TSS) 222 hj.kr
JMP = Unconditional Jump
Short 11101011 8-bit displacement 7+m 7+m r
Direct within Segment 11101001 fufl displacement 7+m 7+m r
Register/Memory 11111111 mod100 wm J 7+m 7+m b hr
Indirect within Segment 10+m 10+m
Direct Intersegment unsigned full offset, selector 12+m 27+m NN
Am386DXL Microprocessor 1-317

This Materia

Copyrighted By Its Respective Mnufacturer

u AMD

Table 23. Am386DXL Microprocessor instruction Set Summary (continued)

Clock Count Comments
Protected] Protected
Resl Virtual
add Add Address| Add
Instruction Format Mode Mode { Mode | Mode
CONTROL TRANSFER (continued)
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Leve! 45+ m hik,r
From 80286 Task to 80286 TSS 274 hjkr
From 80286 Task to Am386DXL CPU TSS 301 h,j.k,r
From 80286 Task to Virwal 8086 Task (Am386DXL CPU TSS) 219 h,j Kk
From Am386DXL CPU Task to 80286 TSS 270 h .k, r
From Am386DXL CPU Task to Am386DXL CPU TSS 303 h,jkr
From Am386DXL CPU Task to Virtual 8088 Task (Am386DXL CPU TSS) 221 h,j,k,r
Indirect Intersegment IL!‘Hl 111 Imod101 rlm1 17+m 31+m b hj k1
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+m h.j.k,r
From 80286 Task to 80286 TSS 279 hijkr
From 80266 Task to Am386DXL CPU TSS 306 hj.k,r
From 80286 Task to Virtual 8086 Task (Am386DXL CPU TSS) 223 hj.kr
From Am386DXL CPU Task to 80286 TSS 275 hj.kr
From Am386DXL CPU Task to Am386DXL CPU TSS 308 h,jkr
From Am386DXL CPU Task to Virtual 8086 Task (Am386DXL CPU TSS) 225 hjk,r
RET = Return from CALL
Within Segment 11000011 - 10+m 10+m b g.hr
Within Seg. Adding Immediateto SP [11000010 1B-bitdkphcermm] 10+m 10+m b g.h.r
intersegment 11001011 18+m 32+m b 9.h,j.k,r
Intersegment Adding Immediate to SP | 11001010 16-bit dbplu:umrﬂ 184+m 32+m b g.h.j.k%r
Protected Mode Only (RET) to Different Prilege Level
Intersegment 69 h,j k¢
[gment Adding | diate to SP 69 h,j. Kk, r
CONDITIONAL JUMPS (Note: Times are Jump “Taken or Not Taken™)
JO = Jump on Overfiow
8-bit Displacement 01110000 8.-bit displacement 7+mor3 [7+mor3 r
Full Displacement 00001111 10000000 full displacement 7+mor3 [7+mor3 4
JNO = Jump on Not Overflow
8.-bit Displacement 01110001 8-bit displacement 7+mor3 [7+mor3 r
Fult Displacement 00001111 10000001 full displacement 7+mor3 j7+mor3 r
JB/INAE = Jump on Below/Not Above or Equal
8-bit Displacement 01110010 8-bit dispiacement 7+mor3 |7+mor3 r
Full Displacement 00001111 10000010 fuil displacement 7+mor3 |7+mor3 r
JNB/JAE = Jump on Not Below/Above or Equai
8-bit Displacament 01110011 8 -bit dieplacement 7+mor3 {7+mor 3 r
Full Displacement 00001111 10000011 full dispiacement 7+mor3 |7+mor3 r
JENZ =Jump on Equal/ Zero
8-bit Displacement 01110100 8 -bit dieplacement 7+mor3 {7+mor3 r
Full Displacement 00001111 10000100 full disptacement 7+mor3 |7+mor3 r
JNE/JNZ = Jump on Not Equal/Not Zero
8-bit Displacement 01110101 8-bit displacement 7+mor3 {7+mor3 r
Full Displacement 0000111t 10000101 full disptacement 7+mor3 |7+mor3 r
JBE/JNA = Jump on Below or Equal/Not Above
8-bit Displacement 01110110 8-bit displacement 7+mor3 |7+mor3 r
Full Displacement 00001111 100001t0 full displacement 7+mor3 |7+mor3 r

1-318 Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD a

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected| Protected
Real | Vsl | Post | Vitus
instruction Format Mode Mode | Mode | Mode
CONDITIONAL JUMPS (continued)
JNBE/JA = Jump on Not Below or Equal/Above
8-bit Displacement 01110111 8 -bit displacement 7+mor3 { 7+mor3 r
Fuli Displacement 00001111 10000111 tult displacement 7+mor3 §{7+mor3 r
JS = Jump on Sign
8-bit Displacement 01111000 8 -bit displacement 7+mor3 } 7+mor3 r
Full Displacement 00001111 10001000 full displacement 7+mor3 {7+mor3 r
JNS = Jump on Not Sign
8-bit Displacement 01111001 8-bit displacement 7+mor3 | 7+mor3 4
Fuli Displacement 00001111 10001001 full displacement 7+mor3 | 7+mor3 r
JP/JPE = Jump on Parity/Parity Even
8 -bit Displacement 01111010 8 -bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001010 full dispiacement 7+mor3 {7+mor3 r
JNP/JPO =Jump on Not Parity/Parity Odd
8-bit Displacement 01111011 8 -bit displacement 7+mor3 { 7+mor3 r
Full Disptacement 00001111 10001011 full displacement 7+mor3 {7+mor3 4
JUJNGE =Jump on Less/Not Greater or Equal
8 -bit Displacement 01111100 8-bit displacement 7+4mor3 | 7+mor 3 r
Full Displacement 00001111 10001100 full displacement 7+mor3 | 7+mor 3 r
JNLJGE = Jump on Not Less/Graater or Equal
8 -bit Displacement 01111101 8 -bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001101 full disptacement 7+4mor3 | 7+mor3 r
JLE/UNG = Jump on Less or Equal/Not Greater
8-bit Displacement 01111110 8-bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001110 full displacement 7+mor3 {7+mor3 r
JNLE/JG =Jump on Not Less or Equal/Greater
8-bit Displacement 01111111 8 -bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001111 full displacement 7+mor3 | 7+mor3 r
JCXZ=Jump on CX Zero 11100011 8-bit displacement g+mor5 | 9+mor 5 r
JECXZ =Jump on ECX Zero * 11100011 8 -bit displacement 9+mor5 |9+mor5 r
LOOP =Loop CX Times 11100010 8-bit displacement 11 +m 11+m r
LOOPZ/LOOPE =Loop with Zero/Equal |11 100001 8-bit displacement 11 +m 11+m r
LOOPNZ/LOOPNE=Loop while Not Zero[11 100000 8-bit displacement 11 +m 11+m r
CONDITIONAL BYTE SET (Note: Times are Register/Memory)
SETO =Set Byte on Overflow
To Register/Memory Fo 001111 | 10010000 I mod 00 0 r!mgl W5 o5 h
SETNO = Set Byte on Not Overflow
To Register/Memory r00001111 110010001 lmodooo r/ﬂ 4/5 4/5 h
SETB/SETNAE = Set Byte on Below/Not Above or Equal
To Register/Memory roo 001111 l 10010010 I mod000 ”’Ll a/5 4/5 h
« Address Size Prefix Ditferentiates JCXZ from JECXZ.
Am386DXL Microprocessor 1-319

This Material Copyrighted By Its Respective Manufacturer

n AMD

Table 23. Am386DXL Microprocessor instruction Set Summary (continued)

Clock Count Comments
Protected Protected
P .‘nmnl R Real _Vlmnl
Instruction Format Mode Mode | Mode | Mode
CONDITIONAL BYTE SET (continued)
SETNB =Set Byte on Not Below/Above or Equal
To Register/Memory Loooonn l 10010011 l mod 000 r/m] a5 a/5 h
SETE/SETZ = Set Byte on Equal/Zero
To Register/Memory l 00001111 |1oo1o1oo I mod 000 r/m] a5 45 h
SETNE/SETNZ = Set Byte on Not Equai/Not Zero
To Register/Memory Loooonn l1oo1o1o1 lmodooo rlm] 45 45 h
SETBE/SETNA = Set Byde on Below or Equal/Not Above
To Register/Memory L00001111 l10010!10 I mod 000 rIm] 4/5 4/5 h
SETNBE/SETA = Set Byte on Not Below or Equal/Above
To Register/Memory I 00001111 I 10010111 I mod000 r/m] 4/5 4/5 h
SETS = Set Byte on Sign
To Register/Memory Loooonn] 10011000 l mod 000 llm] 45 a5 h
SETNS =Set Byte on Not Sign
To Register/Memory l 00001111 I 10011001 l mod 000 rIm] 4/5 4/5 h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory [00001111 |\0011010 lmodooo r/m] 45 4/5 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
To Register/Memory Ioooonn I1oono11 Imoaooo r/ml a5 45 h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register’/Memory Iﬂ)001111 I 10011100 l mod 000 rlml 4/5 45 h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
To Register/Memory I00001111 l01111101 l mod 000 r/m] 4/5 a5 h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
To Register/Memory loooo1111]10011110 Imodooo f/m] 45 45 h
SETNLE/SETG = Set Byte on Not Less or Equal/Greater
To Register/Memory 00001111 10011111 I mod000 mm 4/5 4a/5 h
ENTER =Enter Procedurs 11001000 16-bit displacement, 8-bit level
L=0 10 10 b h
L=t 12 12 b h
L>1 15+4(n-1) | 15+4(n-1) b h
LEAVE = Leave Procedure 4 4 b h
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified 11001101 type] 37 b
Type 3 11001100 33 b
INTO=Interrupt 4 if Overfiow FagSet | 11001110
fOF =1 35 b, e
IfOF =0 3 3 b,e
1-320 Am386DXL Microprocessor

This Material Copyrighted By

Its Respective Manufacturer

AMD u

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Proweced Prowected
_ Real Virtusl Real Virtual
Instruction Format Mode Mode | Mode | Mode
INTERRUPT INSTRUCTIONS (continued)
Bound = Interrupt 5 if Detect P 1100010 I mod reg rlmJ
Value Out of Range
If Out of Range 44 b.e e.g.hjkr
If in Range 10 10 b,e |e.g.hjkr
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate to Same Privilege Level 59 a.ikr
Via interrupt or Trap Gate to Different Privilege Level 99 g K r
From 80286 Task to 80286 TSS via Task Gate 282 oK
From 80286 Task 1o Am386DXL CPU TSS via Task Gate 309 gk, r
From 80286 Task to Virtual 8086 Mode via Task Gate 226 0. k1
From Am386DXL CPU Task to 80286 TSS via Task Gate 284 g.) Kk
From Am386DXL CPU Task to Am386DXL CPU TSS via Task Gate 311 .. Kr
From Am386DXL CPU Task to Virtual 8086 Mode via Task Gate 228 gk r
From Virtual 8086 Mode to 80286 TSS via Task Gate 289 gkt
From Virtual 8086 Mode to Am386DXL CPU TSS via Task Gate 316 g.)k
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or interrupt Gate 119 g.i.kr
INT: Type 3
Via Interrupt or Trap Gate to Same Privilege Levet 59 a. ik r
Via Interrupt or Trap Gate to Different Privilege Level 99 g.). %1
From 80286 Task to 80286 TSS via Task Gate 278 g. K r
From 80286 Task to Am386DXL CPU TSS via Task Gate 305 G K.
From 80286 Task to Virtual 8086 Mode via Task Gate 222 9.0 kr
From Am386DXL CPU Task to 80286 TSS via Task Gate 280 g.ixr
From Am386DXL CPU Task to Am386DXL CPU TSS via Task Gate 307 g.jkr
From Am386DXL CPU Task 1o Virtual 8086 Mode via Task Gate 224 0.k r
From Virtual 8086 Mode to 80286 TSS via Task Gate 285 a.j.k,r
From Virtual 8086 Mode to Am386DXL CPU TSS via Task Gate 312 gk r
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 119 .k r
INTO
Via Interrupt or Trap Gate to Same Privilege Level 59 ok
Via Interrupt or Trap Gate to Different Privilege Level 99 g.ikr
From 80286 Task to 80286 TSS via Task Gate 280 g.ikr
From 80286 Task to Am386DXL CPU TSS via Task Gate 307 0.5 kT
From 80286 Task to Virtual 8086 Mode via Task Gate 224 gk
From Am386DXL CPU Task to 80286 TSS via Task Gate 282 a.Kr
From Am386DXL CPU Task to Am386DXL CPU TSS via Task Gate 309 9.0k r
From Am386DXL CPU Task to Virtual 8086 Mode via Task Gate 225 9.k
From Virual 8088 Mode 1o 80286 TSS via Task Gate 287 g.j. k. r
From Virtual 8086 Mode to Am386DXL CPU TSS via Task Gate 314 g0k r
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 118 gk, 1
BOUND
Via Interrupt or Trap Gate to Same Privilege Level 59 .k
Via Interrupt or Trap Gate to Ditferent Privilege Levei 99 g.hkr
From 80286 Task to 80286 TSS via Task Gate 254 gk
From 80286 Task 1o Am386DXL CPU TSS via Task Gate 284 gk r
From 80286 Task to Virtual 8086 Mode via Task Gate 231 g kr
From Am386DXL CPU Task to 80286 TSS via Task Gate 264 9. kr
From Am386DXL CPU Task to Am386DXL CPU TSS via Task Gate 294 g.j.Kr
From Am386DXL CPU Task to Virtual 8086 Mode via Task Gate 243 g.. k.t
From Virtual 8086 Mode to 80286 TSS via Task Gate 264 g kr
From Virtual 8086 Mode to Am386DXL CPU TSS via Task Gate 294 g K. r
From Virtual 8086 Mode to Privilege Leve! 0 via Trap Gate or Interrupt Gate 119 g.i. k.
INTERRUPT RETURN
IRET = Interrupt Return 2 9. 0.0k, 1
Protected Mode Only (IRET)
To the Same Privilege Levet (within Task) 38 g, h,j. X, r
To Different Privilege Level (within Task) 82 g, h,j. k, r
From 80286 Task 1o 80286 TSS 232 hj.k,r
From 80286 Task to Am386DXL CPU TSS 265 hj.kr
From 80286 Task to Virtual 8086 Task 213 hjk,r
From 80286 Task to Virtual 8086 Mode (within Task) 60
From Am386DXL CPU Task to 80286 TSS 27 hj k. r
From Am386DXL CPU Task to Am386DXL CPU TSS 275 h ik r
From Am386DXL CPU Task to Virtual 8086 Task 223 hj.kr
From Am386DXL CPU Task to Virtual 8086 Mode (within Task) 60
Am386DXL. Microprocessor 1-321

This Material Copyrighted By Its Respective Manufacturer

n AMD

Table 23. Am386DXL Microprocessor instruction Set Summary (continued)

Clock Count Comments
Protected Protecied
_ Re Virtual | Real | Virtual
Instruction Format Mode Mode | Mode | Mode
PROCESSOR CONTROL
HLT=HALT 5 5 1
MOV = Move to and From Control/Debug/Test Registers
CRO/CR2/CR3 from register 00001111 00100010 11 eee reg 11/4/5 11/4/5 I
Register From CR3-0 00001111 00100000 11eeereg 6 6 |
DR3-0 From Register 0000t111 00100011 11eeereg 22 22 I
DR7-6 From Register 00001111 00100011 11eeereg 16 16 i
Register from DR7-6 00001111 00100001 11eeareg 14 14 I
Register from DR3-0 00001111 00100001 11eeereg 22 22 1
TR7-6 from Register 00001111 00100110 11eeereg 12 12 I
Register from TR7-6 00001111 00100100 11ee0reg 12 12 {
NOP = No Operation 10010000 3 3
WAIT = Walt until BUSY 10011011 7 7
pin is negated
NOP = No Operation 3 3
PROCESSOR EXTENSION INSTRUCTIONS—See copr d heet
Pr Extension Escap [11011TTT ImodLLL rm h
TTT and LLL bits are op-code information for coprocessor
PREFIX BYTES
Address Size Prefix 01100111] 0
LOCK = Bus Lock Prefix 11110000 [(] m
Operand Size Prefix 01100110 0 0
Segment Override Prefix
Ccs: 00101110 0o o
Ds: 00111110 0 0
ES: 00100110 o o
FS: 01100100 0 0
GS: 01100101 4] (4]
SS: 00110110 V] 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory Lo 1100011 I mod reg rﬂ NA 20/21 a h
LAR = Load Access Rights
From Register/Memory m001 111 I 00000010 I modreg r/m l N/A 15/16 a g.hjp
LGDT = Load Global Descriptor
Table Register I 00001111]OOOOOOO1 l mod010 r/ml 11 1 b,c hl
LIDT = Load Interrupt Descriptor
Table Register |00001111 100000001 l modo0 11 r/ml 1 11 b,c h, i
LLDT = Load Local Descriptor
Table Register to Register’Memory 00001111 I 00000000 l mod0 10 r/m} N/A 20/24 a 9.hj}
LMSW z Load Machine Status Word
From Register/Memory l 00001111 I 00000001 l mod110 om I 11/14 1114 b.c h,t
1-322 Am386DXL Microprocessor

This Materia

Copyrighted By Its Respective Mnufacturer

AMD n

Table 23. Am386DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Prowected Protected
Real Vitual | Real | Vinual
Address| Add
Iinstruction Format Mode Mode | Mode | Mode
PROTECTION CONTROL (continued)
LSL = Load Segment Limit
From Register/Memory I00001111 |00000011]mod reg r/m l
Byte-Granular Limit NA 21/22 a g.hip
Page-Granular Limit N/A 25/26 a g.hjp
LTR=Load Task Register
From Register/Memory loooo1111 |oooooooo lmod001 m NA 2327 | a |anit
SGDT = Store Global Descriptor
Table Register ﬁ0001111 loooooom lmodooo rImJ 9 9 b,c h
SIDT = Store Interrupt Descriptor
Table Register Ioooo1111 loooooom lmodoo1 om 9 ° b,c h
SLDY = Store Local Descriptor Table Register
To Register/Memory 00001111 00000000 mod000 rm NA 22 a h
SMSW = Stors Machine Status Word| 00001111 00000001 modt100 rm 272 22 b, ¢ h, |
STR = Store Task Register
To Register/Memory 00001111 loooooooo |mod001 rlrL| NA 22 a h
VERR = Verify Read Access
Register/Memory 00001111 00000000 mod100 rm NA 10711 a a.hip
VERW = Verity Write Access 00001111 00000000 mod101 ¢m NA 15/16 a g.hijp

Instruction Notes for Table 23.

Notes a through c apply to Am386DXL CPU Real Address Mode
only.

a. This is a Protected Mode instruction. Attempted execution in Real
Mode will result in Exception 6 (Invalid op-code).

b. Exception 13 fault (General Protection) will occur in Real Mode if
an operand reference is made that partially or fully extends beyond
the maximum CS, DS, ES, FS, or GS limit, FFFFH. Exception 12
(fault stack segment limit violation or not present) will occur in Real
Mode if an operand reference is made that partially or fully extends
beyond the maximum SS limit.

¢. This instruction may be executed in Real Mode. In Real Mode, its

purpose is primarily to initialize the CPU for Protected Mode.
Notes d through g apply to Am386DXL CPU Real Address Mode
and Am386DXL CPU Protected Virtual Address Mode.

d. The Am386DXL CPU uses an early-out multiply algorithm. The
actual number of clocks depends on the position of the most
significant bit in the operand (muitiplier).

Clock counts given are minimum to maximum. To calculate actual
clocks use the following formula:

Actual Clock = if m < >0 then max (flogz Im]}, 3) + b docks: if m=0
then 3 +b clocks

in this formula, mis the multiplier, and

b =9 for register to register,

b = 12 for memory to register,

b = 10 for register with immediate to register,

b =11 for memory with immediate to register.

e. An Exception may occur, depending on the value of the operand.

f. TOCK is automatically asserted, regardiess of the presence or
absence of the TOCK prefix.

g. [OTR is asserted during descriptor table accesses.

Notes h through r apply to Am386DXL CPU Protected Virtual Ad-
dress Mode only.

h. Exception 13 fault (General Protection Violation) will occur if the
memory operand in CS, DS, ES, FS, or GS cannot be used due to
either a segment limit violation or access rights violation. If a stack
limitis violated, an Exception 12 (Stack Segment Limit Violation or
Not Present) occurs.

i. Forsegment load operations, the CPL, RPL, and DPL must agree
with the privilege rules to avoid an Exception 13 fault (General
Protection Violation). The segment's descriptor must indicate
present or Exception 11 (CS, DS, ES, FS, GS Not Present). If the
SS register is loaded and a stack segment not present is detected,
an Exception 12 (Stack Segment Limit Violation or Not Present)
occurs,

j. All segment descriptor accesses in the GDT or LDT made by this

instruction will automatically assert LOCK to maintain descriptor
integrity in multiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to another
code segment will cause an Exception 13 (General Protection
Violation) is an applicable privilege rule is violated.

I. An Exception 13 fault occurs if CPL is greater than 0 (O is the most
privileged level).

m. An Exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than
JOPL. The IOPL and VM fields of the flag register are updated only
if CPL=0.

0. The PE bit of the MSW (CRO) cannot be reset by this instruction.
Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand
does not cause a protection Exception; rather, the zero flag is
cleared.

Am386DXL Microprocessor 1-323

This Material Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

q. If the coprocessor's memory operand violates a segment limit or
segment access rights, an Exception 13 fauit (General Protection
Exception) will occur before the ESC instruction is executed. An
Exception 12 fault (Stack Segment Limit Violation or Not Present)
will occur if the stack limit is violated by the operand's starting
address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be in the
defined limit of a code segment or an Exception 13 fault (General
Protection Violation) will occur.

Instruction Encoding
Overview

All instruction encodings are subsets of the general in-
struction format shown in Figure 83. Instructions consist
of one or two primary op-code bytes, possibly an ad-
dress specifier consisting of the mod r/m byte and
scaled index byte, adisplacement if required, and anim-
mediate data fieid if required.

Within the primary op-code or op-codes, smaller encod-
ingfields may be defined. These fields vary accordingto
the class of operation. The fields define such informa-
tion as direction of the operation, size of the displace-
ments, register encoding, or sign extension.

Almost all instructions referring to an operand in mem-
ory have an addressing mode byte following the primary
op-code byte(s). This byte, the mod r/m byte, specifies
the address mode to be used. Cenrtain encodings of the
mod /m byte indicate a second addressing byte, the
scale-index-base byte, follows the mod r/m byte to fully
specify the addressing mode.

Addressing modes can include a displacement immedi-
ately following the mod r/m byte, or scaled index byte. If
a displacement is present, the possible sizes are 8, 16,
or 32 bits.

If the instruction specifies an immediate operand, the
immediate operand follows any displacement bytes.
The immediate operand, if specified, is aiways the last
field of instruction.

Figure 83 illustrates several of the fields that can appear
in an instruction, such as the mod field and the r/m field,
but the Figure does not show all fields. Several smailer
fields also appear in certain instructions, sometimes

within the op-code bytes themseives. Table 24 is a com-
plete list of all fields appearing in the Am386DXL micro-
processor instruction set. Further ahead, following Ta-
ble 24, are detailed tables for each field.

32-Bit Extensions of the Instruction Set

With the Am386DXL microprocessor, the 8086/80186/
80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions are
added to support the 32-bit data types, and 32-bit ad-
dressing modes are made available for all instructions
referencing memory. This orthogonal instruction set ex-
tension is accomplished having a Default (D) bit in the
code segment descriptor, and by having 2 prefixes to
the instruction set.

Whether the instruction defaults to operations of 16 or
32 bits depends on the setting of the D bit in the code
segment descriptor, which gives the default length
(either 32 or 16 bits) for both operands and effective ad-
dresses when executing that code segment. In the Real
Address Mode or Virtual 8086 Mode, no code segment
descriptors are used, but a D value of 0 is assumed in-
ternally by the Am386DXL microprocessor when oper-
ating in those modes (for 16-bit default sizes compatible
with the 8086/80C186/80286).

Two prefixes, the Operand Size Prefix and the Effective
Address Size Prefix, allow overriding individually the
Default selection of operand size and effective address
size. These prefixes may precede any op-code bytes
and affect only the instruction they precede. If neces-
sary, one or both of the prefixes may be placed before
the op-code bytes. The presence of the Operand Size
Prefix and the Effective Address Prefix will toggle the
operand size or the effective address size, respectively,
to the value opposite from the Default setting. For exam-
ple, if the default operand size is for 32-bit data opera-
tions, then presence of the Operand Size Prefix toggles
the instruction to 16-bit data operation. As another
example, if the default effective address size is 16 bits,
presence of the Effective Address Size prefix
toggles the instruction to use 32-bit effective address
computations.

I TTTT T[T TTTT7T77[mod TTT /m] ss indox base] d32|16| 8 | none datasz| 16 | & | none

7 o 7 0 7653 20 765320
— —_— A ~ I, I
opcode mod r/m s-i-b address immediate
(one or two bytes) byte byte displacement data
(T represents an opcode bit) — -/ (4,2, 1 bytes (4, 2, 1 bytes
register and address or none) or none)
mode specifier
15021B-085
Figure 83. General Instruction Format
1-324 Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

avp &\

Table 24. Fields within Am386DXL Microprocessor Instructions

Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Fult Size is either 16 or 32 bits) 1

d Specifies Direction of Data Operation 1

] Specifies if an Immediate Data Field must be Sign-Extended 1

reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 23';" m;')d;

or r/m

ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3

tttn For Condition Instructions, specifies a Condition Asserted or a Condition Negated 4

Note: Table 23 shows encoding of individuat instructions.

These 32-bit extensions are available in all Am386DXL
microprocessor modes, including the Real Address

Encoding of reg Field When w Field
is not Present in Instruction

Mode or the Virtual 8086 Mode. In these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instructions
with more than one prefix, the order of prefixes is

unimportant.

Unless specified otherwise, instructions with 8- and
16-bit operands do not affect the contents of the high-
order bits of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating regis-
ter selection, addressing mode and so on. The exacten-

Register Selected | Register Selected
During 16-Bit During 32-Bit
reg Field Data Operations Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 St ESI
111 DI EDI

codings of these fields are defined immediately ahead.
Encoding of Operand Length (w) Field
For any given instruction performing a data operation,

Encoding of reg Fleld When w Field
is Present in Instruction

the instruction is executing as a 32- or 16-bit operation. Register Specified b Field
Within the constraints of the operation size, the w field Duglngo qs_gf D:ta gpr:rg"o:s
encodes the operand size as either one byte or the full
operation size, as shown in the table below. Function of w Fieid
Operand Size | Operand Size 9 (when w = 0) {when w =1)
During 16-Bit During 32-Bit 000 AL AX
w Field Data Operations | Data Operations 001 CL CX
- . o010 DL DX
0 8 Bits 8 Bits
1 16 Bits 32 Bits o1 BL ex
100 AH SP
Encoding of The General Register (reg) Field 101 CH BP
The general register is specified by the reg field, which 1o DH Si
may appear in the primary op-code bytes, or as the reg m BH Dt
field of the mod r/m byte, or as the r/m field of the mod
r/m byte.
Am386DXL Microprocessor 1-325

This Materi al

Copyrighted By Its Respective Mnufacturer

This Materia

n AMD

Register Specified by reg Field
During 32-Bit Data Operations
Function of w Field

reg (when w = 0) {(when w = 1)
000 AL EAX
001 CL ECX
010 DL EDX
o1 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
11 BH EDI

Encoding of The Segment Register (sreg) Field

The sreg field in certain instructions is a 2-bit field allow-
ing one of the four 80286 segment registers to be speci-
fied. The sreg field in other instructions is a 3-bit field, al-
lowing the Am386DXL microprocessor FS and GS seg-
ment registers to be specified.

2-Bit sreg2 Field

2-Bit sreg2 Field Segment Register Selected
00 ES
01 cs
10 SS
11 DS

3-Bit sreg3 Fleld

3-Bit sreg3 Field Segment Register Selected
000 ES
001 CS
010 SS
o011 DS
100 FS
101 GS
110 do not use
111 do not use

Encoding of Address Mode

Except for special instructions, such as PUSH or POP,
where the addressing mode is pre-determined, the ad-
dressing mode for the current instruction is specified by
addressing bytes following the primary op-code. The
primary addressing byte is the mod r/mbyte, and a sec-
ond byte of addressing information, the s-i-b (scale-in-
dex-base) byte, can be specified.

The s-i-b byte (scale-index-base byte) is specified when
using 32-bit addressing mode and the mod r/m byte has
r/m = 100 and mod = 00, 01, or 10. When the sib byte is
present, the 32-bit addressing mode is a function of the
mod, ss, index, and base fields.

The primary addressing byte, the mod r/m byte, also
contains three bits (shown as TTT in Figure 83) some-
times used as an extension of the primary op-code. The
three bits, however, may also be used as a register
field (reg).

When calculating an effective address, either 16-bit ad-
dressing or 32-bit addressing is used. 16-bit addressing
uses 16-bit address components to caiculate the effec-
tive address while 32-bit addressing uses 32-bit ad-
dress components to calculate the effective address.
When 16-bit addressing is used, the mod r/m byte is in-
terpreted as a 16-bit addressing mode specifier. When
32-bit addressing is used, the mod r/m byte is inter-
preted as a 32-bit addressing mode specifier.

Tables on the following pages define all encodings of all
16- and 32-bit addressing modes.

1-326

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD n

Encoding of 16-Bit Address Mode with mod r/m Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:BX + S} 10 000 DS:[BX + Sl + d16]
00 001 DS:[BX + Di} 10 001 DS:[BX + D! + d16]
00 010 SS:[BP + SlI) 10 010 SS:[BP + Sl +d16]
00 o011 DS:BP + DI] 10 Ot SS:{BP + Dl +d16]

00 100 DSiSl] 10 100 DS{S! + d186)]

00 101 DS:DI) 10 101 DS:[DI1 + d16]

00 110 DS:d16 10 110 SS:[BP + d16]

00 111 DS:[BX] 10 111 DS:[BX + d16]

01 000 DS:BX + Sl + d8]} 11 000 Register— See Below
01 001 DSBX + Di+d8] 11 001 Register— See Below
01 010 SS:[BP + Sl +d8) 11 o010 Register— See Below
o1 on SS:[BP + DI + d8] 11 o1t Register— See Below
o1 100 DS Sl + d8] 11 100 Register— See Below
o1 101 DS:{DI + d8) 11 101 Register— See Below
o1 110 SS:{BP + d8] 11 110 Register— See Below
o1 111 DS:{BX + d8] 11 111 Register— See Below

Register Specified by r/m
During 16-Bit Data Operations

This Material Copyrighted By Its Respective Manufacturer

Function of w Field
mod r/m (when w = 0) (when w = 1)
11 000 AL AX
11 001 CL CX
11 010 DL DX
11 o BL BX
11 100 AH SP
11 101 CH BP
11 110 DH Si
11 111 BH DIl
Register Specified by r/m
During 32-Bit Data Operations
Function of w Field
mod r'm (when w = 0) (whenw=1)
i1 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI
Am386DXL Microprocessor 1-327

n AMD

Encoding of 32-Bit Address Mode with mod r/m byte
(No s--b Byte Present)

mod r/m Effective Address mod r/m Effective Address

00 000 DS:{EAX] 10 000 DS{EAX + d32]

00 001 DS{ECX] 10 001 DS:[ECX +d32)

00 010 DS:{EDX] 10 010 DS:[EDX + d32]

00 011 DS:[EBX] 10 o011 DS:{EBX + d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:d32 10 101 SS:[EBP + d32]

00 110 DS:[ESI} 10 110 DS:[ESI + d32]

00 111 DS:EDI) 10 111 DSEDI + d32]

01 000 DSIEAX + d8] 11 000 Register— See Below
01 001 DSECX + d8} 11 001 Register— See Below
01 010 DS:EDX + d8] 11 010 Register— See Below
01 011 DS:[EBX + d8}] 11 o1 Register— See Below
01 100 s-i-b is present 11 100 Register— See Below
01 tot SS:[EBP + d8) 1 101 Register— See Below
01 110 DS:ESI + d8] 11 110 Register— See Below
01 11 DS:[EDI + d8] 11 111 Register— See Below

Register Specified by reg or r/im
During 16-Bit Data Operations

Function of w Field

mod r/m (when w = 0) {(when w=1)
11 000 AL AX

11 001 CL CcX

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH Sl

1 111 BH DI

Register Specified by reg or r/im
During 32-Bit Data Operations

Function of w Field

mod r/m (when w = 0) (when w=1)
11 000 AL EAX

11 001 CL ECX

i1 010 DL EDX

11 on BL EBX

11 100 AH ESP

11 10% CH EBP

11 110 DH ESI

1 111 BH EDI

1-328

This Materi al

Am386DXL Microprocessor

Copyrighted By Its Respective Mnufacturer

AMD u

Encoding of 32-Bit Address Mode (mod r/m Byte and s-i-b present)

Note: Mod field in mod r/m byte; ss, index, base fields in s-i-b byte.

mod base Effective Address ss Scale Factor

00 000 DS:{EAX + (scaled index)] 00 x1

00 001 DS:[ECX + (scaled index)] o1 x2

00 010 DS:[EDX + (scaled index)} 10 x4

00 011 DS:[EBX + (scaled index)} 1 x8

00 100 SS:(ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:{ESI + (scaled index)]

00 111 DS:[EDI + (scaled index)] Index Index Register
000 EAX

01 000 DS:[EAX + (scaled index) + d8] 001 ECX

01 001 DS:[ECX + (scaled index) + d8] 010 EDX

ot 010 DS:[EDX + (scaled index) + d8] o011 EBX

o1 011 DS:[EBX + (scaled index) + d8] 100 no index reg (see note)

01 100 SS:[ESP + (scaled index) + d8] 101 EBP

ot 101 SS:[EBP + (scaled index) + d8] 110 ESI

01 110 DS:[ESI + (scaled index) + d8] 111 EDI

01 11 DS:[EDI + (scaled index) + d8] Note: When index field is 100, indicating no index register, then ss field

must equal 00. If index is 100 and ss does not equal 00, the effective
address is undefined.

10 000 DS:{EAX + (scaled index) + d32]

10 001 DS:[ECX + (scaled index) + d32]

10 010 DS:[EDX + (scaled index) + d32]

10 011 DS:(EBX + (scaled index) + d32]

10 100 SS:[ESP + (scaled index) + d32]

10 101 SS:EBP + (scaled index) + d32]

10 110 DS:[ESI + (scaled index) + d32]

10 111 DS:[EDI + (scaled index) + d32]

Encoding of Operation Direction (d) Field

In many two-operand instructions the d field is present
to indicate which operand is considered the source and

which is the destination.

d

Direction of Operation

Register/Memory €¢— Register
0 reg Field indicates Source Operand;
mod r/m or mod ss index base indicates

Encoding of Sign-Extend (s) Fleld

The s field occurs primarily to instructions with immedi-
ate data fields. The sfield has an effect only if the size of
the immediate data is 8 bits and is being placed in a 16-
or 32-bit destination.

Effect on Effect on
] Iimmediate Data 8 Immediate Data 16(32

0 | None None

Destination Operand.

Register €— Register Memory

1 reg Field indicates Destination Operand;

mod r/m or mod ss index base indicates Source
Operand.

Sign-Extended Data 8 to fill
16-Bit or 32-Bit Destination

None

Am386DXL Microprocessor

This Material Copyrighted By Its Respective Manufacturer

1-329

a AMD

Encoding of Conditional Test (tttn) Field
For the conditional instructions (conditional jumps and
set on condition), tttn is encoded with n indicating to use
the condition (n=0) or its negation (n=1), and tit giving

Encoding of Control or Debug or Test Register
(eee) Field

For the loading and storing of the Control, Debug and
Test registers.

the condition to test.
test When Interpreted as Control Register Field
Mnemonic Condition tttn
° Overflow 0000 eee Code Reg Name
NO No Overflow 0001 000 CRoO
BNAE Below/Not Above or Equal 0010 o010 CR2
NB/AE Not Below/Above or Equal 0011 011 CR3
EZ EqualZero 0100 Do not use any other encoding.
NE/NZ Not Equal/Not Zero 0101
BENA | Below or Equal/Not Above 0110 When Interpreted as Debug Register Field
NBE/A Not Below or Equal/Above 0111
S Sign 1000 eee Code Reg Name
NS Not Sign 1001 000 DRO
P/PE Parity/Parity Even 1010 001 DR1
NP/PO Not Parity/Parity Odd 1011 010 DR2
LNGE Less Than/Not Greater or Equal 1100 011 DR3
NL/GE Not Less Than/Greater or Equal 1101 110 DR6
LENG Less Than or Equal/Not Greater Than { 1110 111 DR7
NLE/G Not Less Than or Equal/Greater Than | 1111
Do not use any other encoding.
When Interpreted as Test Register Field
eoe Code Reg Name
110 TR6
111 TR7
Do not use any other encoding.
1-330 Am386DXL Microprocessor

This Materi al

Copyrighted By Its Respective Mnufacturer

AMD Z'

This Materi al

MECHANICAL DATA

Introduction

In this section, the physical packaging and its connec-
tions are described in detail.

Package Dimensions and Mounting

The initial Am386DXL microprocessor package is a
132-pin ceramic pin grid array (PGA). Pins of this pack-

‘age are arranged 0.100 inch (2.54 mm) center-to-

center, in a 14 x 14 matrix, three rows around.

A wide variety of available sockets allow low insertion
force or zero insertion force mountings, and a choice of
terminals such as soldertail, surface mount, or wire
wrap.

Package Thermal Specification

The Am386DXL. microprocessor is specified for opera-
tion when ambient temperature is within the range of
0°C-100°C. The ambient temperature may be meas-
ured in any environment, to determine whether the
Am386DXL microprocessor is within specified operat-
ing range.

The PGA ambient temperature should be measured at
the center of the top surface opposite the pins.

ELECTRICAL DATA

Introduction

The following sections describe recommended electri-
cal connections for the Am386DXL microprocessor and
its electrical specifications.

Power and Grounding
Power Connections

The Am386DXL CPU is impiementedin CS21S technol-
ogy and has modest power requirements. However, its
high clock frequency and 72 output buffers (address,
data, control, and HiLDA) can cause power surges as
multiple output buffers drive new signal levels simuita-
neously. For clean on-chip power distribution at high
frequency, 20 Vec and 21 Vss pins separately feed
functional units of the Am386DXL CPU.

Power and ground connections must be made to all
external Vcc and GND pins of the Am386DXL CPU. On
the circuit board, all Vec pins must be connected on a
Vce plane. All Vss pins must be likewise connectedon a
GND plane.

Power Decoupling Recommendations

Liberal decoupling capacitance should be placed near
the Am386DXL CPU. The Am386DXL microprocessor
driving its 32-bit parallel address and data buses at high
frequencies can cause transient power surges, particu-
larly when driving large capacitive loads.

Low inductance capacitors and interconnects are rec-
ommended for best high frequency electrical perform-
ance. Inductance can be reduced by shortening circuit
board traces between the Am386DXL microprocessor
and decoupling capacitors as much as possible. Ca-
pacitors specifically for PGA packages are also com-
mercially available, for the lowest possible inductance.

Resistor Recommendations

The ERROR, FLT, and BUSY inputs have resistor
pullups of approximately 20 Kohms built into the
Am386DXL CPU to keep these signals negated when
no 387DX math coprocessor is present in the system (or
temporarily removed from its socket). The BS16 input
also has an intemal pullup resistor of approximately
20 Kohms, and the PEREQ input has an internal
pulldown resistor of approximately 20 Kohms.

In typical designs, the external puliup resistors are re-
commended. However, a particular design may have
reason to adjust the resistor values recommended here,
or alter the use of pullup resistors in other ways.

Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. NC pins should always re-
main unconnected.

Particularly when not using interrupts or bus hold, (as
when first prototyping, perhaps) prevent any chance of
spurious activity by connecting these associated inputs
to GND.

Pin Signali
B7 INTR
B8 NMI
D14 HOLD

If not using address pipelining, pullup D13 NA to Vcc.
If not using 16-bit size, pullup C14 BS16 to Vcc.
Pullups in the range of 20 Kohms are recommended.

Am386DXL Microprocessor 1-331

Copyrighted By Its Respective Mnufacturer

